• Title/Summary/Keyword: Stable Surface

Search Result 2,168, Processing Time 0.029 seconds

Calculating of the Unrelaxed Surface Energy of Spinel Ferrites (스피넬 페라이트의 비이완 표면에너지 계산)

  • Shin, Hyung-Sup;Sohn, Jeongho
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.713-718
    • /
    • 2015
  • A new method is proposed for the calculation of the unrelaxed surface energy of spinel ferrite. The surface energy calculation consists of (1) setting the central and computational domains in the semi-infinite real lattice, having a specific surface, and having an infinite real lattice; (2) calculation of the lattice energies produced by the associated portion of each ion in the relative domain; and (3) dividing the difference between the semi-infinite lattice energy and the infinite lattice energy on the exposed surface area in the central domain. The surface energy was found to converge with a slight expansion of the domain in the real lattice. This method is superior to any other so far reported due to its simple concept and reduced computing burden. The unrelaxed surface energies of the (100), (110), and (111) of $ZnFe_2O_4$ and $Fe_3O_4$ were evaluated by using in the semi-infinite real lattices containing only one surface. For the normal spinel $ZnFe_2O_4$, the(100), which consisted of tetrahedral coordinated $Zn^{2+}$ was electrostatically the most stable surface. But, for the inverses pinel $Fe_3O_4$, the(111), which consisted of tetrahedral coordinated $Fe^{3+}$ and octahedral coordinated $Fe^{2+}$ was electrostatically the most stable surface.

Analysis of the Stability of HLA-A2 Molecules Expressed on the Cell Surface

  • Lim, Jong-Seok;Lee, Ki-Young;Lee, Hee-Gu;Kim, Ik-Hwan;Lee, Chong-Kil;Han, Seong-Sun;Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.286-293
    • /
    • 1996
  • Association of antigenic peptide with class I MHC is believed to be crucial for maintaining stable conformation of class I molecules. T2 cells that are defective in TAP gene function mainly express class I molecules with an unstable conformation due to little or no association with antigenic peptides, whereas T1 cells that are normal in TAP gene function mainly express the stable form of class I molecules. In this work, attempts were made to determine the molecular stability of stable and unstable class I molecules. Dissociation of HLA-A2 molecules on T1 and T2 cells was monitored by flow cytometry using anti-HLA-A2 antibody after the cells were treated with brefeldin A to shut down the transport of newly-assembled HLA-A2. Estimated dissociation rate constants for the stable and unstable forms of HLA-A2 were 0.076 $h^{-1}$ and 0.66 $h^{-1}$, respectively. It appeared that both T1 and T2 cells express stable and unstable class I complex, but with different ratios of the two forms. Furthermore, $interferon-{\gamma}$ treatment of T1 cells appeared to induce the expression of both the stable and unstable class I molecules. These results demonstrate that class I MHC molecules can be divided into two groups in terms of structural stability and that they exist on the cell surface in both forms in a certain ratio.

  • PDF

Effect of oxidation-Reduction Hating Conditions on Coating Adherence of Hot-Dip Galvanized Steel Containing silicon (Si함유강의 용융아연 도금부착성에 미치는 산화-환원 열처리 영향)

  • 김종상
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.2
    • /
    • pp.101-108
    • /
    • 1998
  • The effect of oxidation-reduction heating conditions on coating adherence of hot-dip galvanized steel containing silicon has beeninvestigated. The presence of a stbke sillicon oxide formed on the steel surface has been shown to be very detrimenal to proper wetting by liquid zinc. When the steel has more than the critical sillicon content neeled to from a stable external oxide, the use of oxidation-reduction method has been found successful in obtaining a good quality, coated product with excellence adhreence. This can be explained by the formation of an iron oxide. The iron oxrtion of the scale is reduced, leaving the stable oxides dispersed in a fresh metallic iron surface layer. This reduced iron surface is easily wetted by the liquid zinc and excellent adherence is obtained.

  • PDF

Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

  • Cheng, Desheng;Wang, Weihua;Yang, Shijun;Deng, Haifei;Wang, Rongfei;Wang, Binjun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.360-367
    • /
    • 2016
  • A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead-bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is $60{\pm}1mm$, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

First-principles study of the initial-stage oxidation of Si(1110)-(7x7)

  • Lee, Sung-Hoon;Kang, Myung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.147-147
    • /
    • 2000
  • Chemisorption of oxygen molecules on the Si(111)-(7x7) surface has been studied extensively as a model for the initial-stage oxidation of the surface. The basic step to the surface oxidation is the dissociation of the adsorbed O2 molecules, but the dissociation procedure and the atomic structure of the reaction products still remains as a subject of debates. We present here density-functional theory calculations on the initial-stage oxidation states of the Si adatom site for all possible dissociation configurations that can be generated by multiple O2 reactions. We determine the equilibrium structures and analyze their electronic and vibrational properties in comparison with measured UPS, XPS, and EELS spectra. The O(ad) atom bonded on top of the Si adatom is always less stable than the O(ins) atom inserted into one of the adatom backbonds. Our electronic and vibrational analysis demonstrates further that the O(ad) and O(ins) atoms account well for the metastable and stable features in previous experiments, respectively. Moreover, the calculated decay pathways of the metastable structures and the comparison of the calculated O ls core-level shifts with XPS data provides a convincing argument in unambiguously identifying the experimental metastable and stable structures, thereby making it possible to build a correct atomic-scale picture of the initial-stage oxidation process on this surface.

  • PDF

Characteristics of near-surface ozone distribution

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Kim, Jae-Hwan;Moon, Yun-Seob;Song, Sang-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.127-137
    • /
    • 2000
  • This study presents an analysis of the characteristics of vertical ozone distribution near the surface using ozonesonde data(l995 to 1998), plus surface ozone and meteorological data from the Pohang region. These features were examined in detail using three case studies. The first related to episodes of high surface ozone concentrations during the Spring season when the frontogenesis between the high and low pressure associated with the upper-level jet stream was found to be located near the surface. The second was a 5-day winter period(l3 -17 December, 1997) in the Pohang province when the hourly concentrations exceeded 90 ppb on several occasions owing to low-level jets(LLJs) induced by a nocturnal stable layer. Accordingly, this explains why the high surface ozone concentrations occurred at night as the ozone was transported across the zone by a strong wind speed( over 12.5 ms .1). The third case study was ozone enhancement due to photochemical reactions. In this case, the maximum concentration of ozone exceeded 60 ppb in the summer(23 -28 August, 1997). When an ozone peak appeared within the boundary layer, the occurrence frequency of a low-level jet due to the nocturnal stable layer was about 77%, similarly the occurrence frequency of a near-surface ozone peak relative to the appearance of an LLJ was about 76%. Accordingly, there is clearly a close correlation between the occurrence of LLJs and near-surface ozone peaks.

  • PDF

Highly Stable Photoluminescent and Magnetic Multilayers Using Nucleophilic Substitution Reaction in Organic Media

  • Jo, Jin-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.262-262
    • /
    • 2010
  • We introduce a novel and efficient strategy for producing free-standing functional films via photo-crosslinking and electrostatic layer-by-layer (LbL) assembly, which can allow the buildup of hydrophilic multilayers onto hydrophobic surfaces. Hydrophobic multilayers were deposited on ionic substrates by a photo-crosslinking LbL process using photo-crosslinkable polymers. The photo-crosslinked surface was converted to an anionic surface by excess UV light irradiation. This treatment allowed also the stable adhesion between metal electrode or cationic polyelectrolyte and hydrophobic multilayers. After dissolving the ionic substrates in water, the formed free-standing films exhibited unique functionalities of inserted components within hydrophobic and/or hydrophilic multilayers.

  • PDF

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook;Kim, Ansoon;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.62-65
    • /
    • 2017
  • Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.

NC End Milling Strategy of Triangulation-Based Curved Surface Model Using Steepest Directed Tree (최대경사방향 트리를 이용한 삼각형요소화 곡면모델의 NC 엔드밀링가공에 관한 연구)

  • 맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2089-2104
    • /
    • 1995
  • A novel and efficient cutter path planning method for machining intricately shaped curved surfaces, called the steepest directed tree method, is presented. The curved surface is defined by triangular facets, the density and structure of which are determined by the intricacy and form accuracy of the surface. Geometrical form definition and recognition of the topological features are used to connect the nodes of the triangulated surface meshes for the successive and interconnected steepest pathways, which makes good use of end milling characteristics. The planetary cutter centers are determined to locate along smoothly changing paths and then the height values of the cutter are adjusted to avoid surface interference. Several machined examples of intersecting and intricate surfaces are presented to illustrate the benefits of the new approach. It is shown that due to more consistent geometry matching between cutter and surface(in comparison with the current CC Cartesian method) surface finish can be typically improved. Moreover, the material in concave fillets which is difficult to be removed by ball mills can be removed efficiently. The built-in positioning of cutter to avoid interference runs minutely in the sharp and discontinuous regions. The steepest upward movement of the cutter gives a stable dynamic cutting state and allows increase in the feedrate and spindle speed while remaining the stable cutting state.