• Title/Summary/Keyword: Stable Isotope

Search Result 352, Processing Time 0.033 seconds

Application of Stable Isotope Analysis for Aquaculture Organisms (수산 · 양식 생물 연구를 위한 안정동위원소 분석 기법의 소개와 활용)

  • Eun-Ji, Won;Hee Young, Yun;Bohyung, Choi;Kyung-Hoon, Shin
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.61-73
    • /
    • 2022
  • Stable isotope analysis (SIA) is being used in various research fields including environmental science, ecology, biogeochemistry, forensics, and archeology. In this paper, for the purpose of enhancing applications and utilizations stable isotope analysis techniques to aquaculture research, we would like to introduce the background knowledge necessary to utilize stable isotope analysis techniques. In particular, with a focus on the approach using natural abundance, the principle of fractionation (change in isotope ratio) that occurs in the process of the integration of elements into biological tissues and how stable isotope ratios are determined by fractionation. This paper is intended to suggest whether SIA is used as a valuable tool in the fields of ecology and environmental science. With the understanding of the field of stable isotopes through this paper, various applications of stable isotope ratios are expected in fisheries science and aquaculture research in the future.

Applications and Prospects of Stable Isotope in Aquatic Ecology and Environmental Study (수생태 환경 연구에 있어 안정동위원소의 활용과 전망)

  • Choi, Bohyung;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.96-104
    • /
    • 2018
  • Stable isotope approach for aquatic ecology and environmental sciences has been introduced as very useful technique since 1980s and also has been applied to investigate various issues in aquatic ecology and environmental study last 10 years in Korea. Especially carbon and nitrogen isotope ratios have been mainly used to understand food web energy flow and ecosystem structure. In addition, nitrogen isotope ratio has been applied for nitrogen cycle and source identification as well as biomagnification studies. However, large temporal or spatial variations of nitrogen isotope ratio of primary producer have been found in many aquatic environments, and it is regarded as the critical problems to determine trophic level of aquatic animals. Recently, the compound specific isotope analysis of nitrogen within individual amino acids has been developed as an alternative method for trophic ecology. This article introduces the progress history of stable isotope application in aquatic ecology and environmental sciences, and also suggests new direction based on future prospects in stable isotope ecology and environmental study.

Stable Isotope Labeling of Proteins in Mammalian Cells

  • Lee, KyungRyun;Lee, Jung Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • Stable isotope enrichment in proteins is necessary for high-resolution nuclear magnetic resonance (NMR) experiments. Although methods for 13C, 15N and 2H-enrichment in prokaryotic cells are well established, full processing and correct folding of complex protein systems require higher organisms as the expression host. In the present study, we review recent efforts to enrich stable isotopes in mammalian cells for protein NMR studies.

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

Effects of salmon carcass on forest and stream ecosystems, in Hokkaido, Japan -evidence by stable isotope analysis-

  • Yanai, Seiji;Kochi, Kaori
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.198-203
    • /
    • 2003
  • The effects of salmon carcasses on forest and stream ecosystems were determined by nitrogen stable isotope analysis in natural streams in Hokkaido, Northern Japan, where numerous chum salmon (Oncoryhncus keta) were migrated upstream ITom ocean to spawn in autumn. The leaves and soils surrounding riparian forest and stream dwelling invertebrates were collected before and after migration. The nitrogen stable isotope ratio $({\delta}^{15}N)$ of riparian vegetation (Salix spp.) were different depending on the presence of salmon and distance from the stream. The $({\delta}^{15}N)$ of stream dwelling invertebrates were different between salmon present and absent stream. This difference was tested using the experiment channel by implanting salmon carcasses. The nitrogen stable isotope ratio of epilithic algae and leaf shredding animals were nearly 3 higher in the salmon implanted treatment suggesting that around 20% of salmon derived nitrogen was uptake either in algae and leaf shredding invertebrates. These results suggest that the salmon carcasses effects not only on stream primary production but also on primary consumers, which decompose leaves fertilized with nitrogen from carcasses.

  • PDF

Carbon Stable Isotope Ratios of Phytoplankton and Benthic Diatoms in Lake Katanuma with Reference to Those of Other Lakes

  • Kikuchi, Eisuke;Takagi, Shigeto;Shikano, Shuichi;Hideyuki, Doi
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.8-11
    • /
    • 2005
  • Carbon stable isotope ratios of producers varied in lake ecosystems. In tile present study, we tried to estimate the seasonal variations of carbon isotope ratios of phytoplankton and benthic diatoms in a strongly acidic lake ecosystem. Lake Katanuma is a volcanic, strongly acidic lake (average pH of 2.2), located in Miyagi, Japan. Only two algal species dominate in Lake Katanuma; Pinnularia acidojaponica as a benthic diatom, and Chlamydomonas acidophila as a green alga. Carbon isotope values of P. acidojaponica varied seasonally, while those of particulate organic matter, which were mainly composed of C. acidophila remained fairly stable. The differences suggested that $CO_2$ gas was more frequently limited for P. acidojaponica than C. acidophila, since high density patches of benthic diatoms were sometimes observed on the lake sediment. Generally, carbon concentration mechanisms (CCMs)of microalgae can fix bicarbonate in lakes, and affect the carbon isotope values of microalgae. While, in Lake Katanuma, CCMs of the microalgae may scarcely function because of high $CO_2$ gas concentration and low pH. This is the reason for low seasonal amplitude of carbon isotope values of phytoplankton relative to those in other lakes.

Technical Procedure for Identifying the Source of Nitrate in Water using Nitrogen and Oxygen Stable Isotope Ratios (질소 및 산소 안정동위원소 활용 수계 질산성 질소 오염원 판별을 위한 기술 절차 제안)

  • Kim, Kibeum;Chung, Jaeshik;Lee, Seunghak
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.87-98
    • /
    • 2022
  • This study aims to prepare a technical protocol for identifying the source of nitrate in water using nitrogen (δ15N) and oxygen (δ18O) stable isotope ratios. The technical processes for nitrate sources identification are composed of site investigation, sample collection and analysis, isotope analysis, source identification using isotope characteristics, and source apportionment for multiple potential sources with the Bayesian isotope mixing model. Characteristics of various nitrate potential sources are reviewed, and their typical ranges of δ15N and δ18O are comparatively analyzed and summarized. This study also summarizes the current knowledge on the dual-isotope approach and how to correlate the field-relevant information such as land use and hydrochemical data to the nitrate source identification.

Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type

  • Chung, Ill-Min;Lee, Taek-Jun;Oh, Yong-Taek;Ghimire, Bimal Kumar;Jang, In-Bae;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.195-200
    • /
    • 2017
  • Background: The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. Methods: C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. Results: The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The ${\delta}^{15}N_{AIR}$ and ${\delta}^{34}S_{VCDT}$ values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the ${\delta}^{13}C_{VPDB}$ value. The combination of ${\delta}^{13}C_{VPDB}$, ${\delta}^{15}N_{AIR}$, or ${\delta}^{34}S_{VCDT}$ in ginseng, except the combination ${\delta}^{13}C_{VPDB}-^{34}S_{VCDT}$, showed a better discrimination depending on soil type or fertilizer type. Conclusion: This case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.