• Title/Summary/Keyword: Stabilized soil

Search Result 226, Processing Time 0.032 seconds

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

Effects of soaking on a lime stabilized clay and implications for pavement design

  • Bozbey, Ilknur;Kelesoglu, M. Kubilay;Oztoprak, Sadik;Komut, Muhammet;Comez, Senol;Ozturk, Tugba;Mert, Aykan;Ocal, Kivilcim
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-127
    • /
    • 2021
  • This paper investigates the effects of soaking on a lime stabilized high plasticity clay and evaluates the implications for pavement design. In this context, the soil was stabilized by 4%, 6% and 9% hydrated lime. The soil was pulverized in two different gradations so that representative field gradations could be simulated. Both soil pulverization levels passed the relevant field gradation criteria. Curing durations were chosen as 7 days, 28 days and 56 days. Two groups of samples were prepared and were tested in unconfined compression test apparatus to measure the strength and secant modulus at failure values. One of the groups was tested immediately after curing. The other group of samples were first cured and then subjected to soaking for ten days before testing. Visual observations were made on the samples during the soaking period. The results showed the superiority of fine soil pulverization over coarse soil pulverization for unsoaked conditions in terms of strength and modulus values. Soaking of the samples affected the unconfined compressive strength and modulus values based on lime content, curing duration and soil pulverization level. In soaked samples, fine soil pulverization resulted in higher strength and modulus values compared to coarse soil pulverization. However, even with fine soil pulverization, effects of soaking on modulus values were more significant. A new term named as "Soaking Influence Factor (SIF)" was defined to compare the reduction in strength and modulus due to soaking. The data was compared with the relevant design guidelines and an attempt was made to include Soaking Influence Factors for strength and modulus (SIFS and SIFM) into pavement design processes. Two equations which correlated secant modulus at failure to unconfined compressive strength were proposed based on the samples subjected to soaking. The results of this study showed that in order to decrease the diverse effects of soaking for lime stabilized soils, soil pulverization level should be kept as fine as possible in the field. Importance of proper drainage precautions in the pavements is highlighted for better performance of the pavements.

Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System

  • Kim, Eun-Ki;Ahn, Ik-Sung;L.W.Lion;M.L.Shuler
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.716-719
    • /
    • 2001
  • The mobilization and biodegradation of phenanthrene in soil was enhanced by using paraffin oil, which was stabilized by the addition of a surfactant (Brji 30). The ratio of paraffin oil/Brij 30 was determined by measuring the change in the critical micelle concentration. When only surfactant was used, the stabilized paraffin oil emulsion could dissolve more phenanthrene in the water phase. Column experiment showed increased phenanthrene mobilization from the contaminated soil. The phenanthrene mobilized in the paraffine oil/Brij 30 emulsion was biodegraded faster than that in water phase or surfactant solution. This result indicates that a paraffin oil/surfactant system can be effectively used for the removal of PAH from contaminated soil.

  • PDF

Strength Characteristics of Stabilized Dredged soil and Correlation with Index Properties

  • Kim, Yun-Tae;Do, Thanh-Hai;Kang, Hyo-Shup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.489-494
    • /
    • 2010
  • A geo-composite soil (GCS) is a stabilized mixture of bottom ash, cement and dredged soil. Various samples with different mass ratios of mixtures were tested under curing time of 7 and 28 days to investigate physical properties and compressive strength. This paper focused on the effect of bottom ash on the strength characteristics of Busan marine dredged soil. Cement has been added as an additive constituent to enhance self-hardening of the blended mixture. The unconfined compressive strength of GCS increases with an increase in curing time due to pozzolanic reaction of the bottom ash. The strength after 28 days of curing is found to be approximately 1.3 to 2.0 times the strength after 7 days of curing, regardless of mixture conditions. The secant modulus of GCS is in the range of 55 to 134 times the unconfined compressive strength. The correlation of unconfined compressive strength with bottom ash content and initial void ratio are suggested.

  • PDF

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

Delayed compaction effect on the strength and dynamic properties of clay treated with lime

  • Turkoz, Murat
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.471-480
    • /
    • 2019
  • The constructions of engineering structures such as airports, highways and railway on clayey soils may create many problems. The economic losses and damages caused by these soils have led researchers to do many studies using different chemical additives for the stabilization of them. Lime is a popular additive used to stabilize the clayey soils. When the base course is stabilized by mixing with an additive, inevitable delays may occur during compaction due to reasons like insufficient workers, breakdown of compaction equipment, etc. The main purpose of this study is to research the effect of compaction delay time (7 days) on the strength, compaction, and dynamic properties of a clay soil stabilized with lime content of 0, 3, 6, 9, 12 and 15% by dry weight of soil. Compaction characteristics of these mixes were determined immediately after mixing, and after 7 days from the end of mixing process. Within this context, unconfined compressive strength (UCS) under the various curing periods (uncured, 7 and 28 days) and dynamic triaxial tests were performed on the compacted specimens. The results of UCS and dynamic triaxial tests showed that delayed compaction on the strength of the lime-stabilized clay soil were significantly effective. Especially with the lime content of 9%, the increase in the shear modulus (G) and UCS of 28 days curing were more prominent after 7 days mellowing period. Because of the complex forms of hysteresis loops caused by the lime additive, the damping ratio (D) values differed from the trends presented in the literature and showed a scattered relationship.

Impact of MJS treatment and artificial freezing on ground temperature variation: A case study

  • Jiling, Zhao;Ping, Yang;Lin, Li;Junqing, Feng;Zipeng, Zhou
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.293-305
    • /
    • 2023
  • To ensure the safety of underground infrastructures, ground can sometimes be first treated by cement slurry and then stabilized using artificial ground freezing (AGF) technique before excavation. The hydration heat produced by cement slurry increases the soil temperature before freezing and results in an extension of the active freezing time (AFT), especially when the Metro Jet System (MJS) treatment is adopted due to a high cement-soil ratio. In this paper, by taking advantage of an on-going project, a case study was performed to evaluate the influence of MJS and AGF on the ground temperature variation through on-site measurement and numerical simulation. Both on-site measurement and simulation results reveal that MJS resulted in a significant increase in the soil temperature after treatment. The ground temperature gradually decreases and then stabilized after completion of MJS. The initiation of AGF resulted in a quick decrease in ground temperature. The ground temperature then slowly decreased and stabilized at later freezing. A slight difference in ground temperature exists between the on-site measurements and simulation results due to limitations of numerical simulation. For the AGF system, numerical simulation is still strongly recommended because it is proven to be cost-effective for predicting the ground temperature variation with reasonable accuracy.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.