• Title/Summary/Keyword: Stabilized soil

Search Result 226, Processing Time 0.024 seconds

Stabilization of Metals-contaminated Farmland Soil using Limestone and Steel Refining Slag

  • Lim, Jeong-Muk;You, Youngnam;Kamala-Kannan, Seralathan;Oh, Sae-Gang;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • The metals contamination of farmland soil nearby abandoned metal mine was serious problem in Korea. Stabilization of contaminated soil was reported using various stabilizers. Application of limestone and steel refining slag was reported as effective stabilizers in the stabilization of metals. The batch studies confirmed that the mixture of limestone and steel refining slag was suitable for stabilization of metals in contaminated soil. The limestone and steel refining slag mixture (2 : 1 and 3 : 2) were used in column studies and it was confirmed that the stabilizers effectively stabilized heavy metals in contaminated soil. The pH of the soil was increased with the addition of stabilizers. Total leached concentration of metals from the column study was reduced 44, 17, and 93% in comparison to the control at arsenic, cadmium and copper, respectively. The sequential extraction studies showed that the exchangeable fraction was changed into carbonate bound fraction (Cd and Cu) and Fe-Mn oxide bound fraction (As). Based on the results we confirmed that 2:1 ratio of limestone and steel refining slag effectively stabilizes the heavy metals. The mixed treatment of lime stone with steel refining slag would be an effective and feasible method for controlling metals leaching in contaminated soil.

Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil (개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

An experimental investigation on dispersion and geotechnical properties of dispersive clay soil stabilized with Metakaolin and Zeolite

  • Ahmadreza Soltanian;Amirali Zad;Maryam Yazdib;Amin Tohidic
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • Dispersion occurs when clay soil disperses under specific conditions and is rapidly washed away. While there are numerous methods for rectifying it, they are neither cost nor time-effective. The current study used metakaolin and zeolite to improve heavily dispersive clay soil either separately or in combination at 0%, 2%, 4%, 6%, and 8% of the soil weight. After 7 days of curing, the samples were tested to determine the extent of change in the dispersion potential, as well as the improvement of the geotechnical properties of the soil. The results indicated that the addition of 2% zeolite with 6% to 8% metakaolin decreased the dispersion potential considerably. Double hydrometry test findings revealed that the dispersion potential decreased by almost 70% and entered the non-dispersive group; the crumb test also revealed this. Atterberg limits testing indicated a decrease in the plasticity index which reduced the flexibility of the samples. The greatest decrease in PI (67.5%) was achieved with the addition of 8% zeolite plus 8% metakaolin to the soil. The results of density tests revealed that a decrease in the optimal moisture content increased the maximum dry density of soil. This increase in density was a response to the high reactivity of metakaolin with calcium hydroxide and the formation of calcium hydroxide hydrate gel. This eventually caused an increase in the unconfined compressive strength, the greatest increase in strength of about 1.8-fold was observed with a combination of 2% zeolite and 6% metakaolin compared to the unmodified sample.

A study on the relationship between concentration of phosphorus, turbidity, and pH in water and soil (물과 토양에서 인의 농도, 탁도 그리고 pH와의 관계에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.304-309
    • /
    • 2011
  • In this research, behaviour of turbidity and phosphorus in water and soil dependent upon pH and a change of water was studied. Phosphorus dissolve rate from turbidity was increased for water if potential of hydrogen was less than pH 4 or more than pH 7. Turbidity release rate from soil was increased with pH. Turbidity release rate from soil was drastically increased for water if potential of hydrogen was more than pH 4. turbidity release rate from soil was stabilized more than pH 6. Dissolved phosphorus was increased from 2 hours to 24 hours and stabilized in 24 hours. Turbidity was reached the peak of 24 hours and decreased from 24 hours to 96 hours. Turbidity and dissolved phosphorus was decreased for water if these samples were changed a overlying water. Behaviour of turbidity was analogous to dissolved phosphorus when potential of hydrogen was increased from pH 6 to pH 10 and a change of overlying water was increased from 1 time to 4 times. These results suggest that phosphorus dissolve rate and turbidity were directiy correlated with pH. These results are of great importance in lakes because most lakes have a pH in the range of pH 7-10.

A Study for Field Application of Environmental-friendly Waterproof Method for Riverbed (친환경 하상차수공법 현장 적용성에 관한 연구)

  • Park, Minchul;Kim, Seonggoo;Kwak, Nokyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • In period of rapid economic development, as doing river conservation work by using harmful materials environmental pollution has adversely effected humans, animals and plants frequently. For recovery of environmental pollution it needs a lot of time and cost. Therefore, in this study, in order to take an environment-friendly method which is also economical and durable both results of the laboratory model test and field test were compared and analyzed. According to the results of the laboratory model test, those methods such as concrete paving, asphalt paving, bentonite mat, stabilized soil method and mixed soil method have small amount of seepage, but on the other hand compaction soil, grassland and permeable materials have considerable amount of seepage. The results of field test show a similar tendency with laboratory test and have been satisfied to assess standard of domestic water permeability below $1.0{\times}10^{-7}cm/sec$ and unconfined compressive strength is also than 1.0MPa so it has been satisfied about standard. In conclusion, as compaction rate increased, as unconfined compression strength increased and coefficient of permeability decreased.

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

A Study on the Characteristics of Bearing Capacity of Soft Silt Soils Mixed with Sand (모래 섞인 연약한 실트지반의 지지력 특성에 관한 연구)

  • Lee Sang-Eun;Park Sang-Bum
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.31-43
    • /
    • 2006
  • As a result of calculating bearing capacity of soft silt soil(ML) and soft silt soils(ML', SM, SM') mixed with sand, all kinds of soils showed smaller values than existing expressions and when theoretical values are applied, considerable review is required. It was found that ultimate surcharge(bearing capacity) of soft silt soil was $q_{ult}=1.34C_u$ that of ML' soil in soft silt soils mixed with 3 kinds of sand $q_{ult}=1.40s$, that of SM soil $q_{ult}=1.73s$ and that of SM' soil $q_{ult}=2.72s$, Consequently, as content of sand having greater permeability than silt soil in creased, soil was stabilized gradually.

Application of Paper Sludge Ash-Stabilized Soft Ground for Subgrade Soil (제지애쉬 고화제로 안정처리된 연약지반의 도로노상토 적용에 관한 연구)

  • Shin, Eunchul;Park, Sooyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.6
    • /
    • pp.13-22
    • /
    • 2018
  • The southwestern part of Korean Peninsula, which length is about 13,000 km, is largely formed with soft cohesive soil ground and when it is developed, the low bearing capacity and excessive settlement of soft ground give many problems. In particular, a lot of clayey soil is deserted due to high moisture content and weakness, and areas formed with soft ground. In this study it was performed unconfined compression test, CBR tests, laboratory frost heaving test, and wheel tracking test in order to determine the optimum mixture ratio of paper sludge ash added chemical stabilizer with soft soil for consideration of its frost heaving and strength characteristics. As a results of the above experiments, when the soft soil is mixed with 6% of chemical stabilizer to improve the soft soil for utilizing as a subgrade soil material. It is satisfied the quality standard of fill materials, and the results of this research are expected to be used as an appropriate usage standard for utilization of on-site soil generated.

Feasibility Study on Stabilization Technique of Cr(VI)-contaminated Site (Cr(VI)으로 오염된 부지의 안정화 기술에 의한 정화 타당성 연구)

  • Yoon, Geun Seok;Yoo, Jong Chan;Ko, Sung-Hwan;Shim, Myung-Ho;Cho, Myung-Hyun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2017
  • In this study, a remedial investigation using reductive stabilization was conducted to treat Cr(VI)-contaminated soil. The influences of various operational parameters, including reaction time and the mass of ferrous iron, were also evaluated. The study site was contaminated with a large amount of Cr(III) and Cr(VI), and the selected treatment method was to stabilize Cr(VI) with ferrous iron, which reduced Cr(VI) to Cr(III) and stabilized the chromium, although a greater mass of ferrous iron than the stoichiometric amount was required to stabilize the Cr(VI). However, some Cr(III) re-oxidized to Cr(VI) during the drying process, and addition of a strong reducing agent was required to maintain reducing conditions. With this reducing agent, the treated soil met the required regulatory standard, and the mass of Cr(III) re-oxidized to Cr(VI) was significantly reduced, compared to the use of only Fe(II) as a reducing agent.

Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar (비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가)

  • Koh, Il-Ha;Kim, Jung-Eun;Park, So-Young;Choi, Yu-Lim;Kim, Dong-Su;Moon, Deok Hyun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.