• 제목/요약/키워드: Stabilized soil

검색결과 225건 처리시간 0.02초

석회 및 연탄회 안정처리토의 압밀특성에 관한 연구 (Studies on the Consolidation Characteristics of Marine Clay Stabilized with Lime and Briquette Ash)

  • 김재영;유병옥;주재우
    • 한국농공학회지
    • /
    • 제34권4호
    • /
    • pp.48-58
    • /
    • 1992
  • This study was conducted to investigate the consolidation characteristics of the marine clay, treated with predetermined ratios of lime and briquette ash. The standard consolidation test was performed for the sample of mixture remoulded under the condition of optimum moisture content. The results obtained were as follows ; 1.The increase of the consolidation coefficient due to load increament was larger in the lime treated soil and briquette ash treated soil than in the untreated soil. The decrease of the compression index due to admixing ratio of additives was smaller in the former than in the latter. 2.The increase of the secondary consolidation coefficient of the untreated soil due to load increment was minimal, while that of lime treated soil and the lime-briquette ash treated soil was conspicuous and that of briquette ash treated soil was slight. 3.The $C\alpha$/Cc relationship of untreated soil was represented by colsely distributed points. That of briquette ash treated soil, lime treated soil and the lime-briquette ash treated soil was represented by linear distribution. The $C\alpha$/Cc values of untreated soil, briquette ash treated soil and lime treated soil were approximately 0.049, 0.044 and 0.031, respectively. 4.The maximum consolidation coefficient was obtained with lime and briquette ash (lime : briquette .h 2 :1) mixture ratio of 15%. And the minimum secondary consolidation coefficient, compression index was obtained with same mixture ratio. The required quantity of lime could be reduced and the consolidation was accelerated by applying the above mixture ratio.

  • PDF

석회석과 제강슬래그를 이용하여 안정화한 담수된 논토양의 비소 및 중금속의 거동변화 (The Fate of As and Heavy Metals in the Flooded Paddy Soil Stabilized by Limestone and Steelmaking Slag)

  • 고일하;김의영;지원현;윤대근;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권1호
    • /
    • pp.7-18
    • /
    • 2015
  • The characteristics of As and heavy metals depend on the oxidation/reduction condition of the soil environment. The most heavy metals are immobilized by the reduction condition whereas As, Fe and Mn become more soluble. Therefore this study estimated the stabilization efficiency of the agricultural paddy soil in the vicinity of the abandoned mine using a flooded column test including analysis of the soil solution, contaminants fractionation and rice grain. Limestone and steelmaking slag were used as amendments for stabilization of the contaminated soil. In an analysis of the soil solution, the mobile characteristics of Fe and Mn, which were used as electron acceptors of the microorganisms, were controlled by increasing the pH by adding alkali amendments. This means that the contaminants combined with Fe and Mn can be stable under flooded reduction condition. However, the concentrations of cationic heavy metals (Cd, Pb, and Zn) were also decreased without amendments because the carbonates produced from microbial respiration increased the pH of the soil solution. In the amended soil, the specific sorbed fraction of As and carbonates fraction of heavy metals were increased when compared to the control soil at the end of the column test. Especially in heavy metals, the increase of carbonates fraction seems to be influenced by alkali amendments rather than microbial respiration. Because of the stabilization effect in the flooded paddy soil, the contents of As and Zn in rice grain from amended soil were lower than that of the control soil. But additional research is needed because of the relatively higher Pb content identified in the rice grain from the amended.

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

지오그리드를 활용한 인천국제공항 활주로 보강사례 (Case Study of Geogrid Reinforcement in Runway of Inchon International Airport)

  • 신은철;오영인;이규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF

The Characteristics of Soil Organic Matter

  • You Sun-Jae;Kim Jong-gu;Cho Eun-Il
    • 한국환경과학회지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2006
  • The purpose of this study is to illustrate the characteristics of soil organic matter (SOM) and partition coefficient $(K_{DOC})$. Humic substances (HS) from eight soils of varying properties were extracted by two different methods. The dissolved organic carbon (DOC) concentration was stabilized in 22hrs. The ratio of UV absorbance at 465nm and 665nm (E4/E6 ratio) for HS were similar pattern for 8 soils. The extraction with increasing pH increased dissolution of SON. The ratio of organic carbon (OC) associated with HA and FA (the HA:FA ratio) was varied widely in accordance with the soils and was highly correlated to OC $content(\%)$ of the soils. in modeling metal speciation in soils and soil solutions, assumptions that all DOC in soil solution is associated with FA and that HA:FA ratio in SOM is constant have been made. The results of this study indicate that the validity of these assumptions is questionable. By sequential pH extraction, the $K_{DOC}$ showed in a linear correlation with pH.

Evaluation of the Structural Stability of Rammed Earth Construction :The Case Restoration Project of the Stone Pagoda at Mireuksa Temple Site in Iksan

  • Min, Hwang-Sik;Choen, Deuk-Youm
    • Architectural research
    • /
    • 제20권3호
    • /
    • pp.65-73
    • /
    • 2018
  • The restoration of foundations supporting the immense load of the stone pagoda at Mireuksa Temple Site prioritizes securing its structural stability. But so far, rammed earth construction is still not easy to determine the structural stability. This paper aims to emphasize that a scientific experimental study was conducted on a rammed earth construction, to identify its methodology and obtain objective data about structural stability of the foundation work. An experimental study fabricated specimens from the soil that had been removed during the excavation survey, determined the allowable bearing capacity through plate load tests, and compared the results with the predicted stress after reassembly of the stone pagoda to estimate the structural stability. Then, the repair method was selected based on the experimental study result. The evaluation method of the restoration of foundations consisted of an examination of the allowable bearing capacity and settlement. The allowable bearing of the reinforced foundation was more than twice the contact pressure under the stacked stones of the pagoda. The possibility of settlement of the rammed earth foundation soil layer during the pagoda assembly is expected to be very low because the settlement amount of the reformed soil layer is less than half of the settlement of the stabilized existing soil layer.

시멘트함량 및 다짐함수비가 Soil Cement의 압축강도에 미치는 영향에 관한 연구 (A Study on the Effects of Molding Water Content and Cement Content on Unconfined Compressive Strength of Soil Cement Mixtures)

  • 김재영;강예묵
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3685-3701
    • /
    • 1975
  • This study was conducted to investigate the strength of soil cements for varied molding water content and cement content(3,6,9,12%) in four cementstabilized soils(KY: sand, MH: sad, SS: sandy loam, JJ: loam). The eoperimental results obtainedfrom unconfined compressive strength tests are asfollows: 1. The optimum moisture content increased in accordance with the increase of the cement while maximum dry density didn't change uniformly. 2. The moisture content for maximum strength was higher than the optimum moisture content in the higher cement content. Moisture-density curves showed a dull peak in the higher cement contents, on the other hand, a sharp peak in the lower cement contents. 3. In molding the specimen with the approximate optimum moisture content, the maximum strength showed at the wet side of the optimum moisture content. 4. SS and JJ maybe used as cement-stabilized base of road to require 300PSI of compressive strength cured seven days, but MH and KY may be not adequate. 5. In soil cement, the better the grain size distribution was, the stronger the compressive strength was itn general. 6. The relation between 28-day strengh and 7-day strength in the cementstabilized four soils may be expressed as follows: q28=1.55q7+1.5 in which q28:28-day strength. q7:7-day strength.

  • PDF

불포화 지반재료의 전단강도정수 추정을 위한 간편법 (A Simple Approach of Estimating the Shear Strength Parameters for Unsaturated Soil-Aggregate Systems)

  • Park, Seong-Wan;Kim, Yong-Rak
    • 한국지반공학회논문집
    • /
    • 제19권3호
    • /
    • pp.75-82
    • /
    • 2003
  • 본 연구에서는 불포화 토질역학 이론에 근거하여 지반재료의 안정처리로 인해 유발되는 전단강도계수의 변화를 추정하는 방법론을 제안하였다. 지반재료의 유효 점착력과 유효 내부마찰각들이 suction측정값들과 일축압축강도 실험결과를 활용하여 추정되었으며, 안정처리제의 사용량에 따른 효과도 비교하였다. 또한 유전상수 측정실험 결과를 통해서 안정처리에 따른 재료의 suction 변화를 알 수 있었으며, 제안된 방법이 불포화 지반재료의 강도정수를 추정할 수 있음을 보여주고 있다.

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

Stabilization of Metals-contaminated Farmland Soil using Limestone and Steel Refining Slag

  • Lim, Jeong-Muk;You, Youngnam;Kamala-Kannan, Seralathan;Oh, Sae-Gang;Oh, Byung-Taek
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권5호
    • /
    • pp.1-8
    • /
    • 2014
  • The metals contamination of farmland soil nearby abandoned metal mine was serious problem in Korea. Stabilization of contaminated soil was reported using various stabilizers. Application of limestone and steel refining slag was reported as effective stabilizers in the stabilization of metals. The batch studies confirmed that the mixture of limestone and steel refining slag was suitable for stabilization of metals in contaminated soil. The limestone and steel refining slag mixture (2 : 1 and 3 : 2) were used in column studies and it was confirmed that the stabilizers effectively stabilized heavy metals in contaminated soil. The pH of the soil was increased with the addition of stabilizers. Total leached concentration of metals from the column study was reduced 44, 17, and 93% in comparison to the control at arsenic, cadmium and copper, respectively. The sequential extraction studies showed that the exchangeable fraction was changed into carbonate bound fraction (Cd and Cu) and Fe-Mn oxide bound fraction (As). Based on the results we confirmed that 2:1 ratio of limestone and steel refining slag effectively stabilizes the heavy metals. The mixed treatment of lime stone with steel refining slag would be an effective and feasible method for controlling metals leaching in contaminated soil.