• Title/Summary/Keyword: Stability-Robustness

Search Result 562, Processing Time 0.025 seconds

Digital Watermarking using Multi-resolution Characteristic of 2D Cellular Automata Transform (다 해상도 특성을 갖는 2D 셀룰러 오토마타 변환을 이용한 디지털 워터마킹)

  • Piao, Yong-Ri;Kim, Seok-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.105-112
    • /
    • 2009
  • In this paper, we propose a digital watermarking method using Multi-resolution Characteristic of 2D CAT (2D cellular automata transform). Firstly, we select the gateway values to generate a basis function and the basis function transforms images into cellular automata space. Then, we embed the random bit sequence as watermark in specific parts of cellular automata transform coefficients. The proposed method not only verifies higher fidelity than the existing method but also stronger stability on JPEG lossy compression, filtering, sharpening and noise through tests for robustness. Moreover, the proposed scheme allows only one 2D CAT basis function per gateway value. Since there are $2^{96}$ possible gateway values.

Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands

  • Yi, Ting-Hua;Li, Hong-Nan;Wang, Xiang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.235-250
    • /
    • 2013
  • Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. According to the mathematical background and implicit assumptions made in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP method for the Canton Tower focusing on application demands. In contrast to existing methods, the presented method renders the corresponding target mode shape partitions as linearly independent as possible and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness of the proposed method. Numerical investigations suggest that the proposed method outperforms the original EfI method in all instances as expected, which is looked forward to be even more pronounced should it be used for other multi-dimensional optimization problems.

Design of Robust Resonance Suppression Controller in Parameter Variation for Speed Control of Parallel Connected Dual SPMSMs Fed by a Single Inverter

  • Yun, Chul;Jang, Tae-Sung;Cho, Nae-Soo;Yoon, Byung-Keun;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1908-1916
    • /
    • 2018
  • This paper proposes a controller design method for suppressing the resonance generated in the slave motor in the middle and low speed operation range, according to the load and parameter differences between two motors, during parallel operation using the master and slave method that controls two surface permanent magnet synchronous motors connected in parallel by a single inverter. The proposed resonance suppression controller is directly obtained by analyzing the resonance characteristics, using the lead controller method. Therefore, it is possible to fundamentally reduce trial and error to set the controller gain. In addition, because the proposed resonance suppression controller was designed as a lead controller, the stability region of the system increased owing to the added zero point, making the system robust with respect to parametric variations. Simulations and experiments confirmed the usefulness of the proposed method and the system's robustness with respect to parametric variations.

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame

  • Guo, Qiang;Liu, Heping;Zhang, Yi
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.994-1005
    • /
    • 2015
  • This paper presents a novel power control strategy for PWM current-source rectifiers (CSRs) in the stationary frame based on the instantaneous power theory. In the proposed control strategy, a virtual resistance based on the capacitor voltage feedback is used to realize the active damping. In addition, the proportional resonant (PR) controller under the two-phase stationary coordinate is designed to track the ac reference current and to avoid the strong coupling brought about by the coordinate transformation. The limitations on improving steady-state performance of the PR controller is investigated and mitigated using a cascaded lead-lag compensator. In the z-domain, a straightforward procedure is developed to analyze and design the control-loop with the help of MATLAB/SISO software tools. In addition, robustness against parameter variations is analyzed. Finally, simulation and experimental results verify the proposed control scheme and design method.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.178-187
    • /
    • 2007
  • One important issue in power systems is dynamic instability due to loosing balance relation between electrical generation and a varying load demand that justifies the necessity of stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate stabilizing signals over a wide range of operating conditions and disturbances. To overcome these drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-based method is used for off-line training of this supervisor controller. The proposed PSS is tested in three operational conditions; nominal load, heavy load, and in the case of fault occurrence in transmission line. The simulation results are provided to compare the proposed PSS with conventional fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the performance and robustness of proposed PSS in different operating conditions is more acceptable

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

Active mass damper system using time delay control algorithm for building structure with unknown dynamics

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Yeong-Jong
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.305-318
    • /
    • 2014
  • This paper numerically investigates the feasibility of an active mass damper (AMD) system using the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the excessive vibration of a building structure under wind loading. Because of its several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance, the TDC algorithm has the potential to be an effective control system for mitigating the vibration of civil engineering structures such as buildings and bridges. However, it has not been used for structural response reduction yet. In this study, therefore, the active control method combining an AMD system with the TDC algorithm is first proposed in order to reduce the wind-induced vibration of a building structure and its effectiveness is numerically examined. To this end, its stability analysis is first performed; and then, a series of numerical simulations are conducted. It is demonstrated that the proposed active structural control system can effectively reduce the acceleration response of the building structure.