• Title/Summary/Keyword: Stability-Robustness

Search Result 566, Processing Time 0.028 seconds

Robust Sliding Mode Control for Path Tracking of Intelligent Mobile Robot

  • Jiangzhou, L-U;Xie Ming
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.1-109
    • /
    • 2001
  • This paper deals with the path following problem of car-like intelligent mobile robot. A robust sliding mode control law based on time-varying state feedback is performed via Lyapunov method for path tracking of nonholonomic mobile robot with uncertainties. At first, A sliding control law is designed by combing the natural algebraic structure of the chained form system with ideas from sliding mode theory. Then, a robust control law is proposed to impose robustness against bounded uncertainties in path tracking. The problem of estimating the asymptotic stability region and the sliding domain of uncertain sliding mode system with bounded control input is also discussed. The proposed sliding mode control law can ensure the global reaching condition of the uncertain control system.

  • PDF

Chattering-Free Sliding Mode Control with a Time-Varying Sliding Surface

  • Kyung, Tai-Hyun;Kim, Jong-Shik;Lee, Kyu-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.4-151
    • /
    • 2001
  • Chattering-free sliding mode control is derived from the reaching law method and Lyapunov stability theorem. Its control input Is composed of continuous term and discontinuous term. By the combination of these terms, the robustness and tracking performance can be improved and the chattering can be avoided. But in the reaching mode, the sliding mode control is sensitive to the modeling uncertainties, parameter variations and disturbances, also it needs a large control input. These result in poor transient responses. In this paper, to overcome these problems in the reaching mode, a time-varying sliding surface is proposed. And it is applied to a 2-link SCARA robot manipulator, experimental results show that the transient response is improved and its ...

  • PDF

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF

Digital Control of an Electromagnetic Levitation System (자기부상 시스템의 디지털 제어)

  • 이승욱;이건복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2312-2321
    • /
    • 1994
  • In this work the dynamics of an electromagnetic levitation system is described by a set of three first order nonlinear ordinary differential equations. The objective is to design a digital linear controller which takes the inherent instability of the uncontrolled system and the disturbing force into consideration. The controller is made by employing digital linear quadratic(LQ) design methodology and the unknown state variables are estimated by the kalman filter. The state estimation is performed using not only an air gap sensor but also both an air gap sensor and a piezoelectric accelerometer. The design scheme resulted in a digital linear controller having good stability and performance robustness in spite of various modelling errors. In case of using both a gap sensor and an accelerometer for the state estimation, the control input was rather stable than that in a system with gap sensor only and the controller dealt with the disturbing force more effectively.

Designing Compensators of Dual Servo System For High Precision Positioning (초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계)

  • Choi, Hyeun-Seok;Song, Chi-Woo;Han, Chang-Soo;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyung-Whan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF

Trajectory Control of a Hydraulic Excavator using Adaptive-Robust Control Method (적응-강인 제어기법을 이용한 유압 굴삭기의 궤적 제어)

  • 최종환;김용석;김승수;양순용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.186-194
    • /
    • 2003
  • This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system fir parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

  • PDF

A Study on the Robust Control of Systems Dominantly Subkected to Modeling Errors and Uncertainties (모델링오차와 불확실성을 지배적으로 받는 시스템의 강인한 제어에 관한 연구)

  • 김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-80
    • /
    • 1995
  • In order to control systems which are dominantly subjected to modeling errors and uncertainties, control strategies must deal with the effect of modeling errors and uncertainties. Since most of control methods based on system mathematical model, such as LQG/LTR method, have been developed mainly focused on stability robustness, they can not smartly improve the transient response disturbed by modeling errors and/or uncertainties. In this research, a fuzzy PID control method is suggested, which can stably improve the transient responses of systems disturbed by modeling errors as well as systems not entirely using mathematical models. So as to assure the effectiveness of suggested control method, computer simulations are accomplished for some example systems, through the comparison of transient responses.

  • PDF

Bond Graph Modeling and LQG/LTR Controller Design of Magnetically Levitation Systems (자기부상 시스템의 본드선도 모델링 및 LQG/LTR 제어기 설계)

  • 김종식;박전수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1620-1634
    • /
    • 1991
  • 본 연구에서는 전기/자기 및 기계적 요소들이 복합되어 이루어진 자기부상 시 스템의 설현을 위한 기초단계로서 제어동역학(controlled dynamics) 측면에 입각한 모 델식을 본드선도 기법을 이용하여 보다 조직적으로 유도한다. 우선, 자속흐름 확장 및 자속 유출량을 고려하여 부상 시스템을 모델링하고 차량/레일 및 2차 현가(second ary suspension)장치를 포함한 자기부상 시스템을 모델링한다. 다음, 지지 및 안내 방향의 동역학을 동시에 고려한 2차원 자기부상 시스템을 본드선도의 다접점 필드(mu- ltiport field) 개념을 이용하여 모델링한다. 끝으로, 본드선도 기법으로 모델링된 2차원 자기부상 시스템의 안정도와 성능을 향상시키기 위하여 LOG/LTR(linear quadra- tic Gaussian control with loop transfer recovery) 제어시스템을 설계한다. LQG/ LTR 제어방법은 Doyle과 Stein에 의해 인성(stability-robustness) 문제와 주파수역 성능을 설계시에 직접 고려할 수 있는 강력한 선형 다변수 제어시스템 설곕방법으로 현재 널리 사용되고 있다.

Identification of Runout. Unbalance and Eddy Current Effect in Active Magnetic Bearing System Using LMS Algorithm (LMS 알고리즘을 이용한 전자기 베어링계에서의 런아웃, 불균형력 및 와전류 효과 규명)

  • 김하용;김승종;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.172-177
    • /
    • 2001
  • This paper proposes an adaptive feedforward controller (AFC) based on LMS for periodic disturbance rejection in active magnetic bearing system. The proposed controller does not alter the stability and robustness of the existing AMB system. It is shown that the control delay due to the eddy current as well as runout and unbalance can be identified and compensated using the estimated displacement from the measured magnetic flux. The simulation results confirm that the proposed scheme successfully identifies and compensates for the runout, unbalance and eddy current effect, leading to a high-precision magnetic bearing system.

  • PDF

Optimal Control of a Flexible Link Robot with Modelling Errors (모델링 오차를 갖는 유연 링크 로봇 최적 제어)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.791-800
    • /
    • 1996
  • Linear LQG controller has been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the model upon which the controller is designed. In this study, the flexible modes of the link manipulator are considered to have uncertain parameters, which can be represented by random variable and these parameters are reflected on the weighting of performance. In this method, the exact modelling for the flexible modes is not necessary. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance and the stability-robustness of the proposed controller reaches reasonably the one based on the full model.

  • PDF