• Title/Summary/Keyword: Stability of slopes

Search Result 499, Processing Time 0.035 seconds

A Case Study of Soil-Cement Fill for Tunneling (소일시멘트 복토후 터널굴착에 대한 사례 연구)

  • Shin Il-Jae;Kang Jun-Ho;Suh Young-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.359-368
    • /
    • 2005
  • In case the overburden of a tunnel is too low to adopt NATM, cut and cover method generally can be chosen as alternative. However, in tunneling some area with very low or no overburden between two mountains, the cut and cover method requires additional construction of a couple of tunnel portals and the maintenance of portal slopes until backfilling is completed. As a solution for this problem, increasing the tunnel overburden by raising the ground level can be effective. This paper presents the case study for tunneling at C240 site in Taiwan High Speed Railway(THSR) in which soil-cement filling method was used for pre-banking before tunnel excavation. Cement content of filling material was $2\~4\%$ and thickness of filling a round was $130\~250\;mm$. The stability evaluation for the soil-cement slope and concrete lining of low cover tunnel was conducted by numerical analysis.

Retention Behavior of Lanthanide Complexes with $\alpha$ -hydroxyisobutyric Acid on Cation Exchanger (양이온 교환체에서 희토류원소와 $\alpha$-Hydroxyisobutyric Acid 착물들의 머무름 거동에 관한 연구)

  • Jo, Gi Su;Han, Seon Ho;Seo, Mu Yeol;Eom, Tae Yun;Kim, Yeon Du
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.582-592
    • /
    • 1990
  • Retention behavior of lanthanide-$\alpha$HiBA complexes was studied on the cation exchanger (LC-18 coated with $C_{20}H_{41}SO_4^-$). An equation predicting retention of lanthanides in isocratic or gradient elution with sodium ion and $\alpha$-HiBA concentration was derived from ion exchange equilibria of metal-ligand complex system, respectively. The relations between log k' and log [Na$^+$] /log [$\alpha$-HiBA) showed non-linearity in isocratic elution. In gradient elution a good linearity between log k' vs log R was obtained. The values of slopes (log k / log R) gave good agreements between calculation and experiment. Individual capacity factors ($k'_{Ln}^{3+}, k'_{LnL}^{2+}, k'{LnL2+}) and stability constant (${\beta}_1$, ${\beta}_2$, ${\beta}_3$) of lanthanide-$\alpha$HiBA complexes were calculated by the non-linear least square fittings using the retention equation. The correlation coefficients of lanthanides were shown better than 0.9996 between experiment and calculation.

  • PDF

Analysis of the Effectiveness of Simplified Slope Stabilization Methods for the Continuous Utilization of Skid Trails (산림작업로의 지속적 활용을 위한 간이 사면안정처리 효과분석)

  • Lee, Kwan-Hee;Hwang, Jin-Seong;Ji, Byoung-Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.582-591
    • /
    • 2019
  • This study was conducted to develop low-cost, simplified slope stabilization methods for the continuous utilization of skid trails, and to analyze the effect of the developed methods. Slope stabilization methods were created on the fill slopes of skid trails in the Forest Technology and Management Research Center of the National Institute of Forest Science.We measured the settlement and bearing capacity of skid trail surfaces, and the displacement of slope stabilization methods with respect to the number of passes (maximum 100 passes) by a logging truck weighing 17 tons. The constancy of slope stabilization methods was determined by measuring displacement of the stabilization structure with respect to the number of logging truck passes. Results showed that the bearing capacity in most cases was insufficient, but that the settlement of skid trails was less than 150 mm, which was considered reasonable. In addition, the stability of root staking wallswas somewhat low, but the average displacements of all slope stabilization methods were generally around 20 mm or less, indicating no issues regarding structural stability. By applying the simplified stabilization methods to skid trail maintenance following timber harvesting, efficient timber harvesting can be achieved. Additionally, these methods can be utilized as permanent forest management infrastructures and complement insufficient forest road facilities.

Probabilistic Three-Dimensional Slope Stability Analysis on Logarithmic Spiral Failure (대수누선파양에 대한 확률론적 3차원 사면안정해석)

  • 서인석;김영수
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.121-140
    • /
    • 1994
  • This paper presents the probabilistic model to evaluate the three-dimensional stability of layered deposits and c-0 soil slopes. Rotational slides are assumed with a cylindroid control part terminated with plane ends. And the potential failure surfaces in this study are assumed with the logarithmic spiral curve refracted at boundary of layers. This model takes into consideration the spatial variabilities of soil properties and the uncertainties stemming from insufficient number of samples and the discrepancies between laboratory measured and in -situ values of shear strength parameters. From the probabilistic approxi mate method (FOSM and SOSM method), the mean and variance of safety factor are calculated, respectively. And the programs based on above models is developed and a case study is analysed in detail to study the sensitivity of results to variations in different parameters by using the programs developed in this study. On the basis of thin study the following conclusions could be stated : (1) The sensitivity analysis shown that the probability of failure is more sensitive to the uncertainty of the angle of internal friction than that of the cohesion, (2) The total 3-D proability of failure and the critical width of failure are significantly affected by total width of slope. It is found that the total 3-D probability of failure and the critical width of failure increase with increasing the slope width when seismic forces do not exist and the total 3-D probability of failure increases with increasing the slope width and the critical width of failure decreases when seismic intensity is relatively large, (3) A decrease in the safety factor (due to effect such as a rise in the mean ground water level, lower shear strength parameters, lower values for the correction factors, etc.) would result in reduction in the critical width of failure.

  • PDF

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.

Evaluation on Weathering Characterization on Rock Types Using Artificial Weathering Test (인공풍화시험을 이용한 암종별 풍화특성 평가)

  • Heo, Yeul;Kang, Changwoo;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.23-32
    • /
    • 2017
  • For exposed slopes, the weathering degree over time has a major effect on the engineering properties of rocks and the slope stability. Rocks are gradually changed by weathering into soil over time, and the resulting physical, chemical and mechanical changes of rocks affect the engineering stability of the slope. However, there are not many ways to objectively evaluate the weathering degree of a slope. In this study, therefore, to investigate the weathering characteristics of rocks, granite, gneiss and shale distributed in the Chungbuk region were sampled by weathering stage and changes in their component minerals and tissues were investigated. Furthermore, artificial weathering was induced using the freezing and thawing test and quantitatively investigated through porosity and absorption rate. In addition, the changes of microcracks due to artificial weathering were evaluated through box fractal dimension ($D_B$). Through mineralogical study the phase change of constituting minerals, the growth of secondary minerals, the development of micro-cracks and the fabric changes due to weathering were observed. The mineralogical, chemical and engineering evaluations of the weathering degree through the experimental results in this study are expected to be useful for analyzing the weathering characteristics and causes by rock type and for proposing a methodology to evaluate the degradation of physical properties comparatively and quantitatively.

A Study on the Topology Optimization of Nail Arrangement using Stiffened Shape Density (보강 형상밀도를 이용한 네일 배치의 위상최적화 연구)

  • Cho, Chung-Sik;Song, Young-Su;Lee, Su-Gon;Woo, Jae-Gyung;Choi, Woo-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.605-618
    • /
    • 2018
  • Korea follows the slope design criteria during construction. It was enacted by the Ministry of Land, Transport and Maritime Affairs. There are cases where the Soil-nail is designed as a measure to secure slope stability. The arrangement of the soil-nail may be arranged at equal intervals or may be arranged differently depending on the soil failure model. The optimum design of the countermeasure method is determined by securing stability of the slope through optimization of dimensions and shape. However, when uniform nails are placed at low elevations in slopes, the standard safety factor is exceeded, which may hinder economic design. It is preferable to arrange the reinforcement of the nails over the entire slope. When the horizontal spacing of the nails was topology optimized according to the slope height, it was possible to minimize the amount of reinforcement while satisfying the standard safety factor. Since the active load is reduced in the section where the slope height is lowered, the safety factor after reinforcement may be excessively increased. Therefore, the phase optimization method is proposed as an economical optimal design method using the reinforcing shape density. In addition, a relational expression was designed to optimize the horizontal spacing by slope height.

A Hydraulic Conductivity Model Considering the Infiltration Characteristics Near Saturation in Unsaturated Slopes (불포화 사면의 포화 부근 침투 특성을 고려한 수리전도도 모델)

  • Oh, Se-Boong;Park, Ki-Hun;Kim, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.37-47
    • /
    • 2014
  • Unsaturated hydraulic conductivity (HC) is integrated theoretically from soil water retention curves (SWRC) by Mualem capillary model, but the prediction of HC is extremely sensitive to small variation of matric suction near saturation. Near saturation, the Mualem HC based on smooth SWRC decreases abruptly and has problems in the reliability of hydraulic behavior and the stability of numerical solutions. To improve van Genuchten-Mualem (VGM) HC, the van Genuchten SWRC model is modified within range of low matric suction (arbitrary air entry pressure). At an arbitrary air entry pressure, the VG SWRC is linearized in log scale until full saturation. The modified VG SWRC does not affect the fit of actual retention behavior and either the parameters of original VG SWRC fit. Using the modified VG SWRC, the VGM HC is modified to integrate for each interval decomposed by arbitrary air entry pressure. An analytical solution on modified VGM HC is proposed each interval, to protect the rapid change in HC near saturation. For silty soils, VGM models of HC function underestimate the unsaturated permeability characteristics and especially show rapid reduction near saturation. The modified VGM model predicts more accurate HC functions for Korean weathered soils. Furthermore, near saturation, the saturated HC is conserved by the modified VGM model. After 2-D infiltration analysis of an actual slope, the hydraulic behaviors are compared for VGM and the modified models. The prediction by the proposed model conserved the convergence of solutions on various rainfall conditions. However, the solution by VGM model did not converge since the conductivity near saturation reduced abruptly for heavy rainfall condition. Using VGM model, the factor of safety is overestimated in both initial and final stage during heavy rainfall. Stability analysis based on infiltration analysis could simulate the actual slope failure by the proposed model on HC.

Prediction of Landslide Using Artificial Neural Network Model (인공신경망모델을 이용한 산사태 예측)

  • 홍원표;김원영;송영석;임석규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.67-75
    • /
    • 2004
  • The landslide is one of the most significant natural disasters, which cause a lot of loss of human lives and properties. The landslides in natural slopes generally occur by complicated problems such as soil properties, topography, and geology. Artificial Neural Network (ANN) model is efficient computing technique that is widely used to solve complicated problems in many research fields. In this paper, the ANN model with application of error back propagation method was proposed for estimation of landslide hazard in natural slope. This model can evaluate the possibility of landslide hazard with two different approaches: one considering only soil properties; the other considering soil properties, topography, and geology. In order to evaluate reasonably the landslide hazard, the SlideEval (Ver, 1.0) program was developed using the ANN model. The evaluation of slope stability using the ANN model shows a high accuracy. Especially, the prediction of landslides using the ANN model gives more stable and accurate results in the case of considering such factors as soil, topographic and geological properties together. As a result of comparison with the statistical analysis(Korea Institute of Geosciences and Mineral Resources, 2003), the analysis using the ANN model is approximately equal to the statistical analysis. Therefore, the SlideEval (Ver. 1.0) program using ANN model can predict landslides hazard and estimate the slope stability.