• Title/Summary/Keyword: Stability of oxidation

Search Result 820, Processing Time 0.024 seconds

Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal (Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.29
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

A Study on the Oxidation of CO and $C_3H_6$ over Noble Metal Supported Catalysts on Monolith (Monolith에 담지한 귀금속촉매상에서 CO와 $C_3H_6$의 동시적 산화반응에 관한 연구)

  • 김태원;고형림;김재형;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.63-72
    • /
    • 1998
  • Simultaneous CO and $C_3H_6$ oxidation was carried out over noble metal supported monolith catalysts in a flow thorugh type reactor at the temperature ranging from room temperature to $500^\circ$C. Pt and Pd were selected as major active species, 10wt% of Ce was impregnated as an additive and alumina and silica were used as supports. The reactant gases were simulated and the reaction products were analyzed by on-line G.C.. EDX, SEM, TGA, XRD and optical microscope were used to analyze the characteristics of the prepared catalysts. Under the given conditions in this study, the catalysts supported on alumina showed better activity for CO oxidation, while Pd catalysts showed better activity for $C_3H_6$ oxidation. The improvement of conversion due to increase in thermal stability possibily by Ce addition was observed only for Pt catalysts.

  • PDF

Effect of Hot Pepper Seed Oil, Capsaicin, and Alpha-Tocopherol on Thermal Oxidative Stability in Lard and Soy Bean Oil (고추씨유, 캡사이신 및 토코페롤의 첨가가 돈지와 대두유의 산화안정성에 미치는 영향)

  • Lee, Chi-Ho;Han, Kyu-Ho;Kim, Ah-Young;Lee, Seul-Ki;Hong, Go-Eun;Pyun, Chang-Won;Choi, Kang-Duk;Yang, Cheul-Young
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.660-666
    • /
    • 2008
  • This study was designed to compare the thermal oxidative stability of lard, soy bean oil, and hot pepper seed oil for 0-3 d at $100^{\circ}C$, and to evaluate the effect of capsaicin on thermal oxidative stability in lard and soy bean oil. As result, thermal oxidation stability was shown in the order hot pepper seed oil>soy bean oil>lard for 0-3 d at $100^{\circ}C$. In blended oils, hot pepper seed oil effectively inhibited lipid oxidation when mixed with lard than soy bean oil by showing the ratio of 30% pepper seed oil plus 70% lard and 60% pepper seed oil plus 40% soy bean oil inhibited lipid oxidation during storage periods. And to investigate the antioxidative effect of antioxidants such as capsaicin and alpha-tocopherol in hot pepper seed oil, 1,200 and 2,400 ppm capsaicin, or 0.3% alpha-tocopherol were added in soy bean oil and lard and stroed for 0-3 d at $100^{\circ}C$. Capsaicin inhibited lipid oxidation in lard but not in soy bean oil, however alpha-tocopherol exhibited a prooxidaton effect in soybean oil. Therefore, it suggests that the application of hot pepper seed oil or capsaicin in lard may be better for thermal oxidative stability.

Oxidative Stability of Sesame Blended Oils (참기름 혼합유의 산화안정성)

  • 맹영선;박혜경
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 1989
  • In the present study, an attempt was made to investigate the oxidative stability of the various sesasme blended oils. Sesame blended oils were perpared by mixing sesame oil with various vegetalbe oils (soybean oil, corn oil, ricebran oil, rapeseed oil, cottonseed oil, and perilla oil) in a ratio of 3:7 (w/w). Fatty acid composition and some of physico-chemical characteristics of the sesame blended oils and vegetable oils including sesame oil were determined before the oxidation experiments. The fatty acid compositions and the physico-chemical characteristics of the vegetable oils changed by blending the oils with sesame oil and the extent of change varied with the type of oil. Particularly, the iodine value of the vegetable oils decreased significantly by sesame oil blending. The sesame blended oils and the vegetable oils including sesame oil were oxidized at $45^{\circ}C$ for 25 days in a dark place, and at $35^{\circ}C$ for 12 days under the irradiation of incandescent electric lamp (40 W). During the oxidation, some physico-chemical characteristics of the oils were determined to evaluate the oxidative stability. Based on the changes of peroxide values, the oxidative stability of the vegetable oils was improved by sesame oil blending.

  • PDF

Studies on Oxidative Stability of Tenebrio molitor Larvae During Cold Storage (갈색거저리(Tenebrio molitor) 유충의 냉장 저장 중 산화 안정성에 관한 연구)

  • Kim, So-Young;Son, Yang-Ju;Kim, Soo-Hee;Kim, An-Na;Lee, Geum-Yang;Hwang, In-Kyeong
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • The purpose of this study was to evaluate the changes on the characteristics of the oxidative stability of Tenebrio molitor larvae during cold storage at $4^{\circ}C$. Pretreatment for T. molitor larvae was designed into three methods: raw (R), freeze-dried (F.D.), and pan-fried (P.F.). The water content of the raw sample (61.46%) was higher than those of other samples (F.D.: 5.02%, P.F.: 3.67%) and its high water content was expected to facilitate the oxidation of the raw sample. In our results, the peroxide value and the carbonyl value of all of the samples increased and the raw sample, after storage for 18 day, showed the highest value. The pan-fried sample had no significant increase in its lactic acid content, acid value, and thiobarbituric acid value; whereas those values were increased in the raw sample and the freeze-dried sample (p<0.05). The browning reaction was more progressed in the pan-fried sample than other samples at 0 day, but there was no significant change during the storage. The raw sample and the freeze-dried sample had their browning indexes increase with the increasing storage period (p<0.05). The pan-fried sample produced less oxidation products than the freeze-dried sample, indicating that the unheated sample was more susceptible to oxidation than the heated samples. In conclusion, heating treatment and low water content would be effective for improving the safety and stability of T. molitor larvae during cold storage.

Thermal Oxidative Stability of Various Vegetable Oils used for the Preparation of the Seasoned Laver Pyropia spp.

  • Kim, Jiyoung;Shin, Eui-Cheol;Lim, Ho-Jeong;Yoon, Minseok;Yang, Hyejin;Park, Joodong;Park, Eun-Jeong;Yoo, Hyunil;Baek, Jeamin;Cho, Suengmok
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Seasoned laver Pyropia spp. is a traditional Korean seafood that has gained popularity worldwide because of its unique taste, texture, and health benefits. It is prepared by roasting a sheet of dried laver, to which vegetable oils have been applied, at an ultra-high temperature (UHT) of $300^{\circ}C$. Therefore, the oxidative stability of the oils is the most important factor in determining the shelf life of seasoned laver products. In this study, we investigated changes in the thermal oxidative stability of six major vegetable oils (sesame, perilla, sunflower, rice bran, canola, and olive) during the seasoned laver processing. The oxidation induction time of each oil from the seasoned laver products was decreased compared with the fresh oil. These results indicate that the UHT treatment ($300^{\circ}C$, 10 s) induced thermal oxidation of the oils. Among the six seasoned laver oils, the induction times of olive (OL, 8.02 h) and sesame (SE, 5.31 h) oils were significantly higher than the other oils. The acid values (AVs) of OL and SE oils from the seasoned laver were 0.49 and 0.79, respectively. On the other hand, perilla oil had the overall worst thermal oxidative properties (induction time: 0.35 h, AV: 2.82). Our results provide useful information about seasoned laver products for researchers or manufactures.

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 8. Studies on Thermal Decomposition Mechanism and Thermal Stability of Composites Impregnated with TEOS (산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 8. TEOS를 함유한 복합재료의 열분해 메카니즘 및 열안정성 연구)

  • 박수진;서민강;이재락
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.866-875
    • /
    • 2001
  • In this work, thermal decomposition mechanism based on kinetic parameters and thermal stability of carbon fiber-reinforced carbon matrix composites (C/C composites), have been studied under high temperature oxidative conditions with addition of tetra-ethylorthosilicate (TEOS) as an oxidation inhibitor. Thermogravimetric analysis (TGA) was executed to evaluate the thermal decomposition mechanism and thermal stability of C/C composites in the temperature range of 30 ~ $850^{\circ}C$. As a result, the kinetic parameters of the composites impregnated with TEOS, i.e., activation energy for thermal decomposition ($E_d$), order of reaction (n) , and pre-exponential factor (A) were evaluated as 136 kJ/mol, 0, and 2.3$\times$$10^9s^{-1}$, respectively. Especially, the IPDT and $E_d$ of C/C composites impregnated with TEOS were improved largely compared with the composites impregnated without TEOS, due to the formation of $SiO_2$ on composite surfaces, resulting in interrupting the oxygen attack to carbon active site in the composites.

  • PDF

Effects of Light on Temperature Dependence of Safflower Oil Oxidation and Tocopherol Degradation (빛이 홍화씨기름 산화 및 토코페롤 분해의 온도의존성에 미치는 영향)

  • Wang, Sun-Yeong;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.287-292
    • /
    • 2012
  • Light effects on temperature dependence of safflower oil oxidation and tocopherol degradation were studied. Safflower oil was oxidized at 20, 40, 60, or $80^{\circ}C$ for 30, 30, 15, and 6 days, respectively, in the dark or under light. Oil oxidation was evaluated with peroxide value (POV) and conjugated dienoic acid (CDA) value, and tocopherols were monitored by HPLC. Safflower oil consisted of palmitic, stearic, oleic, and linoleic acids at 7.3, 2.0, 14.2, and 76.6%, respectively, with tocopherols at 1157.1 mg/kg. Peroxide and CDA values of safflower oil increased while tocopherol contents decreased with the oxidation time and temperature. Light increased and accelerated the oil oxidation and tocopherol degradation. Temperature dependence of the oil oxidation and tocopherol degradation was higher in the dark rather than under light. The results suggest that temperature control could be more essential in the dark rather than under light with regard to the oxidative stability of safflower oil.

Evaluation of the Stability of Oxidation-Reduced Potential (ORP) Using the Filter of the Alkaline Water (알칼리 환원수 필터의 산화환원전위 안정화 평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.129-135
    • /
    • 2016
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. Evaluation of the stability of oxidation-reduced potential (ORP) using the filter of the alkaline water. This study utilizes the three filter of activated carbon, UF, carbon block in alkaline reduced water equipment. Passing the water to the filter is evaluated that the OPR values are stability in accordance with the change of the volume in the bucket. Alkaline reduced water equipment is a system that has the function of making the water reduction. This system is the values of the human body beneficial minerals and ORP are made in the functional water has a very low value than general water. Which has passed through the filter the water in the water negative ions and positive ions through the electrolytic. After electrolysis, the cathode side by water, including $Ca^+$, $K^+$, $Mg^+$, $Na^+$ water gets Alkaline Reduced Water containing the minerals beneficial to the human body. A positive electrode side is made of the organic materials that have an anion such as chlorine (Cl), phosphorus (P), sulfur(S). This experiment uses the Alkaline Reduced Water to adjust the magnitude of the voltage of the electrolysis in the Alkaline Reduced Water. That is 1st step(pH8) 2nd step (pH8.5) 3th step (pH9), 4th step (pH9.5) in the Alkaline Reduced Water and -1st step (pH6.0), -2nd step (pH5.0) used as the acidic oxidation water. When the water passes through the three filter in this system was evaluated whether the ORP values are changed and stabilized. When about 100 liters of water passing through the filter was confirmed that the ORP values are stability and evaluation.