• Title/Summary/Keyword: Stability of $\delta$-Ferrite

Search Result 8, Processing Time 0.024 seconds

Phase Equilibria of the Ferrous Ferrite System of $(Mg_{0.29}-yMnyFe_{0.71})_{3-}\delta$O_4$ ($(Mg_{0.29}-yMnyFe_{0.71})_{3-}\delta$O_4$ 훼라이트계의 상평형)

  • 채정훈;유한일;강선호;강대석;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.394-402
    • /
    • 1995
  • Electrical conductivity and thermoelectric power of the ferrous ferrite system of (Mg0.29-yMnyFe0.71)3-$\delta$O4 have been measured as function of the thermodynamic variables, cationic composition(y), temperature(T) and oxygen partial pressure(Po2) under thermodynamic equilibrium conditions at elevated temperatures. On the basis of the electrical properties-phase stability correlation, the stability regions of the ferrite spinel and its neighboring phases have been subsequently located in the log Po2 vs. y and log Po2 vs. 1/T planes in the ranges of 0 y 0.29, 1100 T/$^{\circ}C$ 1400 and 10-14 Po2/atm 1. The stability region, Δlog Po2(y, 1/T), of the ferrite spinel single phase widens with increasing Mn-content(y) and the boundaries of each region are linear against 1/T with negative slopes.

  • PDF

The Effect of Nickel and Nitrogen on Cryogenic Properties of Austenitic Stainless Steel (냉간가공한 오스테나이트계 강재의 극저온 특성에 미치는 Ni 및 N의 영향)

  • 최진일;주기남;강영환
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.64-70
    • /
    • 2004
  • Cryogenic characteristics of austenitic stainless steel based on 304 steel with nickel and nitrogen were investigated at room temperature and $-196^{\circ}C$. The alloys were fabricated by vacuum arc furnace and cold working after homogenization treatment. The addition of nickel and nitrogen decreased the stability of $\delta$-ferrite and induced the stability against the formation of martensite to result significantly in enhancing ductility at $-196^{\circ}C$. Nitrogen reduced Md temperature, which was beneficial to the tensile strength and elongation at $25^{\circ}C$ and -196$^{\circ}C$.

Determination of Nonstoichiometry$(\delta)$and Phase Stability Region of $(Mg_{0.29}Fe_{0.71})_{3-}\deltaO_4$ by a Coulometric Titration Method (전하적정법에 의한 $(Mg_{0.29}Fe_{0.71})_{3-}\deltaO_4$ 훼라이트의 Nonstoichiometry$(\delta)$와 상안정 영역 결정)

  • 강선호;유한일;강대석;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1491-1500
    • /
    • 1994
  • Nonstoichiometry($\delta$) and the phase stability region of a ferrite spinel (Mg0.29Fe0.71)3-$\delta$O4 have been investigated by a coulometric titration method as a function of temperature(T) and oxygen partial pressure(Po2). It has been found that the spinel is thermodynamically stable in the ranges -8.0$\leq$log(PO2/atm)$\leq$-2.4, -7.0$\leq$log(PO2/atm)$\leq$-1.7 respectvely at 100$0^{\circ}C$. The nonstoichiometry extends over the ranges of -0.004$\leq$$\delta$$\leq$0.007, -0.008$\leq$$\delta$$\leq$0.006, -0.033$\leq$$\delta$$\leq$0.004 at 100$0^{\circ}C$, 120$0^{\circ}C$, respectvely. The observed PO2-dependence of $\delta$ suggests that the majority ionic defects are cation interstitials in the low PO2 region and cation vacancies in the high PO2 region.

  • PDF

The Anodicc PolarizationBehavior of Fe-Cr-Ni-W alloy in 1N HCI Solution (1N 염산 용액에서 Fe-Cr-Ni-W 합금의 양분극 거동에 관한 연구)

  • 윤재돈;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.4
    • /
    • pp.176-182
    • /
    • 1988
  • Effects of Cr, Ni and W on the anodic polarization behavior were investigated for Fe-Cr-Ni-W alloys in deaerated 1N HCI solution. Surface films formed on the polarization were analysed using AES, SEM and EDAX. A higerconcentration of tungten was found in the surface oxide film compared to the matrix. It played an importanet role on incresing the stability of the passive film. The presence of an adequate amount of Cr was essential to increase the pitting resistance of the alloys in acid chloride media. Under 12 wt%cr,alloys containing 6wt%W did not exhidit any passivity at all. The main role of Ni was to control the microstructure rather than to modify the corrosion resistance. In 23 cr-14Ni-^W alloy, the duplex microstructure of ferrite($\delta$-phase) in an austenic matrix was developed. The reson why proferred pitting appeared in austenite and ferrite/austenite interface was that ferrite had more amount of Cr and W than austenite.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Oxygen Permeation Properties and Phase Stability of Co-Free $La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Membrane

  • Kim, Ki-Young;Park, Jung-Hoon;Kim, Jong-Pyo;Son, Sou-Hwan;Park, Sang-Do
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • A perovskite-type ($La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$) dense ceramic membrane was prepared by polymerized complex method, using citric acid as a chelating agent and ethylene glycol as an organic stabilizer. Effect of Ti addition on lanthanum-strontium ferrite mixed conductor was investigated by evaluating the thermal expansion coefficient, the oxygen flux, the electrical conductivity, and the phase stability. The thermal expansion coefficient in air was $21.19\;{\times}\;10^{-6}/K$ at 473 to 1,223 K. At the oxygen partial pressure of 0.21 atm ($20%\;O_2$), the electrical conductivity increased with temperature and then decreased after 973 K. The decrement in electrical conductivity at high temperatures was explained by a loss of the lattice oxygen. The oxygen flux increased with temperature and was $0.17\;mL/cm^2{\cdot}min$ at 1,223 K. From the temperature-dependent oxygen flux data, the activation energy of oxygen ion conduction was calculated and was 80.5 kJ/mol at 1,073 to 1,223 K. Also, the Ti-added lanthanum-strontium ferrite mixed conductor was structurally and chemically stable after 450 hours long-term test at 1,173 K.

THE EFFECT OF OXYGEN GAS PRESSURE ON THE PROPERTIES OF Pb ADDED Ba-FERRITE SPUTTERED FILMS

  • Morisako, A.;Wada, F.;Matsumoto, M.;Naoe, M.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.627-630
    • /
    • 1995
  • BaM films have a lot of advantage of chemical stability and mechanical stability as compared with a metallic thin film. In this paper, (Ba.Pb)M films have been prepared by using dc magnetron sputtering system and the dependences of their crystallographic characteristics and magnetic properties on oxygen pressure($Po_{2}$) were studied. The films prepared at $Po_{2}$ of around 0.02mTorr exhibit a fine particle-like structure and ${\Delta}{\theta}_{50}$ is as small as $1^{\circ}$. $Hc_{\bot},\;Hc_{//}$ and Ms of (Ba.Pb)M films are 700-800Oe, 200Oe and 180-230emu/cc, respectively.

  • PDF

Ultrasonic Nonlinearity of AISI316 Austenitic Steel Subjected to Long-Term Isothermal Aging (장시간 등온열화된 AISI316 오스테나이트강의 초음파 비선형성)

  • Gong, Won-Sik;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of $Cr_{23}C_6$ precipitates and ${\sigma}$ phases.