• Title/Summary/Keyword: Stability in SGF

Search Result 8, Processing Time 0.02 seconds

Effects of Chitosan Coating for Liposomes as an Oral Carrier

  • Lee, Chang-Moon;Kim, Dong-Woon;Lee, Ki-Young
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • The chitosan-coated liposomes (chitosomes) were designed to improve the stability in the gastrointestinal (GI) tract and to enhance the efficacy for oral drug delivery of liposomes. The phosphatic acid (PA)-incorporated anionic liposomes were surface-coated with water soluble chitosan (WSC) by electro-ionic interaction. The shape of the chitosomes observed by transmission electron microscopy (TEM) was spherical in all the formulations and the coating layer by WSC could be founded through TEM images. The mean size and the zeta potential values of the chitosomes increased significantly with depending on the content of WSC added for coating the liposomes. The stability of the chitosomes in the GI tract was confirmed through the change of relative turbidity of the liposomal suspension. The plain liposomes (plasomes) suspension without adding WSC clearly showed the change of relatively turbidity in simulated gastric fluid (SGF), while the change degree of turbidity of the chitosomes in the SGF decreased as increasing of WSC content added for coating liposome. In the 5-CF release study from the plasomes and chitosomes, the plasomes released >90% of the initial 5-CF content at 4 h of release measurement. In contrast, the chitosomes released below 40% of initial content of 5-CF. In conclusion, these results indicate that the chitosomes can be used as a potential carrier for effective oral drug delivery.

Allergenecity of soybean and soybean-based products

  • Kim, Hyung-Soo;Park, Jae-Hyun;Ryu, Mi-Hyun;Lee, Jong-Kwon;Eom, Juno-H;Byun, Jung-A;Oh, Hye-Young
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.132.3-133
    • /
    • 2003
  • The purpose of this study was to investigate the effect of manufacturing process for food on allergenicity of soybean or soybean products. Crude extracts of each soybean (SB), weaning diet A (WA) and B (WB) or soybean paste C (SC) and D (SD) were digested a simulated gastric fluid (SGF) to characterize the physicochemical stability of allergens. Allergens of each smaple except a SB (82, 39, 35 kDa) were not rapidly digested in SGF. The endogenous allergens in each sample were separated by gel electrophoresis and immunobloted with serum from soybean-sensitive patients of normal subjects. (omitted)

  • PDF

Preparation and Stability Evaluation of Docetaxel-Loaded Oral Liposome

  • Chon, Chong-Run;Kim, Hyun-Mi;Lee, Pung-Sok;Oh, Eui-Chaul;Lee, Ma-Se
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • Docetaxel-loaded liposomes were prepared by emulsion-solvent evaporation method, then coated with chitosan at room temperature and lyophilized. This system was designed in order to improve solubility and stability of docetaxel in the GI tract for oral drug delivery. The solubilizing effect of some frequently used solubilizers and/or liposome was determined. Among the results docetaxel-loaded liposomes prepared with 0.5% TPGS as a solubilizer showed 100-fold higher solubility than docetaxel. In a stability test, mean particle size of different liposome formulations was measured by a particle size analyzer in simulated gastric fluid (SGF) and in simulated intestinal fluid (SIF). The particle size of uncoated liposomes was significantly increased compared with that of chitosan-coated liposomes in SGF, however, there was no significant difference between coated and uncoated liposome in SIF. It is evident that chitosan-coated liposomes were more stable in GI conditions. The release characteristics of docetaxel-loaded liposomes were also investigated in three buffer solutions (pH 1.2, 4.0, 6.8). Docetaxel release did not occur in pH 1.2 for 4 hrs. However, in pH 4.0 and 6.8 conditions, docetaxel was gradually released over 24 hrs as a sustained release. It seems that aggregation and precipitation of particles by electrostatic interaction might protect docetaxel from being released. In Conclusion, the results from this study show that the chitosan-coated liposomes may be useful in enhancing solubility and GI stability of docetaxel.

Identification of the Chicken Meat Allergens (닭고기 중 알레르기 유발성분의 동정)

  • 조은득;김동섭;정기화
    • Biomolecules & Therapeutics
    • /
    • v.9 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • The chicken meat has been reported as one of the food causing allergic reactions predominantly to Korean. At present, several in vitro tests for immunoglobulinG (IgG)-mediated as well as IgE-mediated food allergy are available. 13 clinically chicken meat-allergic patients were investigated together with 4control subjects for identification of chicken meat-specific reactivity by ELISA. Also, protein profile and IgE, IgGtotal and IgG4-reacting allergens were detected by means of sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE)and immunoblotting. Chicken meat extracts were prepared as raw, heated, heat and simulated gastric fluid (SGF) treated samples to characterize the stability of allergen to physicochemical treatment. SDS-PAGE revealed 9~200 kDa bands. And in immunoblotting 7 sera were identified most major bands between 10 and 78 kDa. In case of IgE, six proteins (17, 26, 35, 40, 78 kDa) were predominant in heat-treated extract, and the one (35 kDa) was present in SGF-treated preparations. In case of IgG$_{total}$ and IgG4, most of them showed a patters simmilar to IgE. There were significant differences (P<0.05) in IgE, IgG$_{total}$ , IgG4 Abs to chicken meat between the allergic and control subjects in ELISA. In addition, the concentration of IgG4Abs in the challenge-positive subjects was significantly higher than that of control subjects. It is considered that the specific IgE response to chicken meat was rarely prevalent to Koreans. However, the specific IgG4 response play an important role in the development of allergic symptoms.

  • PDF

In vitro stability evaluation of coated lipase

  • Liu, Lu Jie;Zhu, Jia;Wang, Bin;Cheng, Chu;Du, Yong Jie;Wang, Min Qi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.192-197
    • /
    • 2017
  • Objective: The study was conducted to evaluate the stability of commercial coated lipase (CT-LIP) in vitro. Methods: The capsules were tested under different conditions with a range of temperature, pH, dry heat treatment and steaming treatment, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) in this work, respectively. Free lipase (uncoated lipase, UC-LIP) was the control group. Lipase relative activities measured in various treatments were used as a reference frame to characterize the stability. Results: The lipase activities were decreased with increasing temperatures (p<0.05), and there was a markedly decline (p<0.01) in lipase comparative activities of UC-LIP at $80^{\circ}C$ compared with CT-LIP group. Higher relative activities of lipase were observed in CT-LIP group compared with the free one under acidic ambient (pH 3 to 7) and an alkaline medium (pH 8 to 12). Residual lipase activities of CT-LIP group were increased (p<0.05) by 5.67% and 35.60% in dry heat and hydrothermal treatments, respectively. The lipase relative activity profile of CT-LIP was raised at first and dropped subsequently (p<0.05) compared with constantly reduced tendency of UC-LIP exposed to both SGF and SIF. Conclusion: The results suggest that the CT-LIP possesses relatively higher stability in comparison with the UC-LIP in vitro. The CT-LIP could retain the potential property to provide sustained release of lipase and thus improved its bioavailability in the gastrointestinal tract.

Comparison of Allergens in Genetically Modified Soybean with Conventional Soybean (유전자변형 콩과 자연 콩의 알레르기 유발원 비교)

  • 박재현;정승태;김재희;김지영;노건웅
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.293-301
    • /
    • 2001
  • Genetically modified organism (GMO) using recombinant DNA technique has been exponentially increased, however there are still arguments for the safety of GM foods. The objective of this research was to compare the allergens of GM soybean(Roundup Ready$^{TM}$) with conventional soybeans. Each soybean extracts were prepared as crude extracts, heated extracts, and as heated and simulated gastric quid (SGF)-digested samples to characterize the stability of allergens to physicochemical treatment. Positive sera from 20 soybean-sensitive patients and control sera from 5 normal subjects were used to identify the endogenous allergens in soybeans. Specific-IgE binding activities to each soybean preparations were evaluated by ELISA and immunoblot technique. In ELISA result, IgE binding activities of positive sera to soy crude extracts generally showed two fold higher mean value than those of control sera, how-ever there was no significant difference between GM soybean and natural soybean varieties. Extracted proteins form each of the soybean preparations were separated with SDS-PAGE. The band pattern of GM soybean was very similar to those of natural soybean varieties. Immunoblots for the different soybeans revealed no differences in IgE-binding protein patterns, moreover, disclosed five prominent IgE-binding bands (75, 70, 50, 44 and 34 kDa) in crude extracts, four (75, 70, 44 and 34 kDa) in heated preparations, one (50 kDa) in heated and SGF-digested preparations. These IgE binding bands were consistent with previously reported results on the soybean. These results indicate that GM soybean (Roundup Ready$^{TM}$) is no different from natural soybean in terms of its allergen.gen.

  • PDF

Controlled Release of Cyclosporin A from Liposomes-in-Microspheres as an Oral Delivery System

  • Park, Hee-Jung;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.526-529
    • /
    • 2006
  • The aim of this study was to prepare cyclosporin A-loaded liposome (CyA-Lip) as an oral delivery carrier, with their encapsulation into microspheres based on alginate or extracellular polysaccharide (EPS) p-m10356. The main advantage of liposomes in the microspheres (LIMs) is to improve the restricted drug release property from liposomes and their stability in the stomach environment. Alginate microspheres containing CyA-Lip were prepared with a spray nozzle; CyA-Liploaded EPS microspheres were also prepared using a w/o emulsion method. The shape of the LIMs was spherical and uniform, and the particle size of the alginate-LIMs ranged from 5 to $10\;{\mu}m$, and that of the EPS-LIMs was about $100\;{\mu}m$. In a release test, release rate of CyA in simulated intestinal fluid (SIF) from the LIMs was significantly enhanced compared to that in simulated gastric fluid (SGF). In addition, the CyA release rates were slower from formulations containing the liposomes compared to the microspheres without the liposome. Therefore, alginate-and EPS-LIMs have the potential for the controlled release of CyA and as an oral delivery system.

Cross-Reactivity and Digestive Enzyme Stability of Peach, Korean Cherry, and Hot Pepper (복숭아, 앵두, 고추의 교차반응성 및 소화효소안정성)

  • Kim, Eun-Jung;Ko, Yu-Jin;Lee, Gyeong-Ran;Seol, Hui-Gyeong;Kang, Chang-Min;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1487-1492
    • /
    • 2012
  • Peach (Prunus persica) has been recognized as a food allergen for over 20 years. However, there is little information about cross-reactivity with other foods. The aim of this study was to research cross-reactivity of Korean cherry and hot pepper on patients allergic to peach and its stability by digestive enzyme treatment. Peach, Korean cherry, and hot pepper proteins were extracted and separated by Tricine-SDS-PAGE analysis. The protein extracts had a wide range of molecular weight, from 3 kDa to more than 26 kDa, and displayed different patterns of protein bands on Tricine-SDS-PAGE. Peach allergic patients' sera were used to detect the allergenic protein in three samples. Three peach allergic patients' sera reacted strongly with 9 kDa protein of peach, which was the expected lipid transfer protein (LTP) as the major allergen of peach and was detected with anti-LTP1 polyclonal antibody. However, the reactivity of the 23 kDa protein in Korean cherry and hot pepper protein was stronger than that of the 9 kDa protein. The stability of protein extracts on digestive enzyme treatment was examined using simulated gastric fluids (SGF) and simulated intestinal fluids (SIF), in which digestive enzyme stability is one of the characteristics of allergen potentially causing food allergy. Findings confirmed that allergenic proteins in peach, Korean cherry, and hot pepper were not completely digested by SGF and SIF treatments from results of SDS-PAGE analysis. These results confirmed that Korean cherry and hot pepper might cause cross-reactivity in peach allergic patients, and its allergenic proteins have stability against digestive enzymes.