• 제목/요약/키워드: Stability check

검색결과 375건 처리시간 0.024초

붕괴된 사면과 굴착되지 않은 사면의 안정성 검토 (Analysis of Slope Stability in Slopes of Failed and not Excavated)

  • 유병옥;김경석;이용희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 사면안정학술발표회
    • /
    • pp.129-144
    • /
    • 2003
  • Generally, investigation methods of cut slope are conducted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Robust model matching design using normalized left coprime factorization approach

  • Hanajima, Naohiko;Eisaka, Toshio;Yanagita, Yoshiho;Tsuchiya, Takeshi;Tagawa, Ryozaburo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.360-365
    • /
    • 1993
  • In this paper, we propose a new design procedure of the Robust Model Matching(RM) using the Normalized Left Coprime Factorization (NLCF) approach. The RMM aims at reducing the sensitivity of a given control system, but standard design procedures are not for robust stability. Therefore we try applying the robust stability condition based on NLCF to RMM procedure. We first formulate the RMM using the robust stability condition of NLCF approach, then we propose the new procedure of the RMM. The point is that the condition includes the measure of sensitivity of the RMM. In the proposed procedure, a cost function is determined through the condition and solved by H$_{\infty}$ contro technique. Finally we show a design example and check the performance..

  • PDF

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

압연구동제어계(壓延驅動制御系)의 안정도(安定度) 판정법(判定法)에 관한 연구 (A study on the stability criterion of the control systems for the drive systems in rolling mill plants)

  • 정호성;백기남;강명조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.380-382
    • /
    • 1989
  • It is necessary for us to maintain good the quality of products in iron and steel making process, especially in the rolling mill plants. Thus, we need check the stability criteria of control systems. In the frequency domain, the whole system including controllers can be identified using FFT analyzer. But this method is not adequete where precise identification is demanded. Thus a way to complement the defects In the frequency domain analysis using FFT analyzer is introduced. And In the time domain, to establish the stability criteria on the control systems, the assumed parameters obtained using least square method are presented in this report.

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling controller for feedback model updating)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

비선형 정규모드를 이용한 보의 비평면 자유진동해석 (Analysis of Nonplanar Free Vibrations of a Beam by Nonlinear Normal Mode)

  • 이원경;이규수;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.441-448
    • /
    • 2000
  • An investigation into the nonlinear free vibrations of a cantilever beam which can have not only planar motion but also nonplanar motion is made. Using Galerkin's method based on the first mode in each motion, we transform the boundary and initial value problem into an initial value problem of two-degree-of-freedom system. The system turns out to have two normal modes. By Synge's stability concept we examine the stability of each mode. In order to check validity of the stability we obtain the numerical Poincare map of the motions neighboring on each mode.

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling Controller for Feedback Model Updating)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

차량 안정성 제어 시스템의 모듈레이터 성능개선 및 단순화에 관한 연구 (A Study on the Performance Improvement and Simplification of the Modulator for Vehicle Stability Control System)

  • 이종찬;송창섭
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.84-93
    • /
    • 2004
  • This study carries out the performance improvement and simplification of hydraulic modulator that plays an important role in vehicle stability control systems. The mathematical models for each component of a modulator, such as pump, wheel cylinder, check and solenoid valve, accumulator, damper are derived in detail. All the mathematical models are combined to form a modulator system and implemented through a computer program, which can be controlled by a user friendly GUI. To verity the simulation, comparison between simulation and experiments has been made. After the verification of the validity of the simulation, the effects of the design parameters of the modulator on the wheel cylinder pressure is investigated. The results show that the modulator without MPA has advantage in early time pressure rise rate, and it can be simplified.

OPTIMAL DESIGN ALGORITHM OF THE FOUNDATION OF TOWER CRANES

  • Kim, Sun-Kuk;Kim, Jang-Young;Ryu, Sang-Yeon
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1047-1052
    • /
    • 2009
  • As buildings nowadays become taller in height and larger in size the safety review of lifting plan takes larger portion in construction project management. However, the cost and safety in lifting plan have a contradictory effect on each other. Therefore, an optimization algorithm needs devising as a solution of the contradictory problem. In many cases at construction sites, selections and stability review of tower cranes are assigned to equipment suppliers or field managers, which cause the problems in safety and cost of the projects. To improve the part of the current situation, a study on the optimization algorithm for designing the foundation of tower cranes is conducted in this study, which can be utilized by equipment suppliers or field managers to check the stability of tower cranes easily and promptly without substantial knowledge.

  • PDF

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.