• Title/Summary/Keyword: Sr ion

Search Result 310, Processing Time 0.027 seconds

Luminescent Properties of SrTiO3 Phosphors doped with Sm (Sm을 첨가한 SrTiO3 형광체의 발광특성)

  • Park, Chang-Sub;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1019-1023
    • /
    • 2008
  • Photoluminescence properties of $SrTiO_3$:Sm red phosphors synthesized by solid state reaction method were studied under 254 nm excitation. Emission bands at 576 nm and 616 nm in heavily $Sm^{3+}$ ion doped $SrTiO_3$:Sm phosphors were observed, which were attributed to $^4G_{5/2}\rightarrow{^6}H_{5/2}$ and $^4G_{5/2}\rightarrow{^6}H_{7/2}$ transition of $Sm^{3+}$, respectively. The $Sm^{3+}$ ion concentration exhibiting the maximum emission intensity in the $SrTiO_3$:Sm was 30 mol%. The luminescence caused by $Sm^{3+}$ in the $SrTiO_3$:Sm phosphors was interpreted by the energy transfer between $Sm^{3+}$ ions.

Enhanced Luminescence of $SrTiO_3:Pr^{3+}$by Incorporating with $Li^+$ or $Na^+$Ion

  • Tian, Lianhua;Mho, Sun-Il;Bae, Hyun-Sook;Yu, Byung-Yong;Pyun, Chong-Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.819-821
    • /
    • 2002
  • Photoluminescenc (PL) and low-voltage cathodoluminescence (CL) characteristics of $[xSrTiO_3+(1-x)Li_2TiO_3]:Pr^{3+}$ and $[xSrTiO_3+(1-x)Na_2TiO_3]:Pr^{3+}$ systems were investigated. The red luminescence intensities of these compounds are enhanced remarkably by the incorporation of $Li^+$ or $Na^+$ ion as compared to that of $SrTiO_3:Pr^{3+}$. The enhanced luminescence is speculated to result from both the charge compensation of $Pr^{3+}$ site and oxygen vacancies generated in the lattices by $Li^+$ or $Na^+$ ion.

  • PDF

Etching Characteristics of SBT Ihin Film in High Density Plasma (고밀도 플라즈마를 이용한 SBT의 식각 특성)

  • 김동표;이원재;유병곤;김창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.938-941
    • /
    • 2000
  • SrBi$_2$Ta$_2$$O_{9}$(SBT) thin films were etched in Ar/SF$_{6}$ and Ar/CHF$_3$gas plasma using magnetically enhanced inductively coupled plasma(MEICP) system. The etch rates of SBT thin film were 1500$\AA$/min in SF$_{6}$/Ar and 1650 $\AA$/min in Ar/CHF$_3$at a rf power of 600W a dc-bias voltage of -l50V. a chamber pressure of 10 mTorr. In order to examine the chemical reactions on the etched SBT thin film surface , x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were examined. In etching SBT thin film with F-base gas plasma, M(Sr. Bi. Ta)-O bonds are broken by Ar ion bombardment and form SrFand TaF$_2$ by chemical reaction with F. SrF and TaF$_2$are removed more easily by Ar ion bombardmentrdment

  • PDF

XRD Patterns and Bismuth Sticking Coefficient in $Bi_2Sr_2Ca_nCu_{n+1}O_y(n\geq0)$ Thin Films Fabricated by Ion Beam Sputtering Method

  • Yang, Seung-Ho;Park, Yong-Pil
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.158-161
    • /
    • 2006
  • [ $Bi_2Sr_2Ca_nCu_{n+1}O_y(n{\geq}0)$ ] thin film is fabricatedvia two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

A Study on the Adsorption Characteristics of Nitrogen and Oxygen on Ion Exchanged Zeolite Adsorbents (이온교환된 제올라이트 흡착제의 질소 및 산소 흡착 특성 연구)

  • Jeong, Heon-Do;Kim, Dong-Sik;Kim, Kweon-Ill
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.123-130
    • /
    • 2005
  • Zeolite X adsorbents with large surface area were prepared for using oxygen PSA adsorbent. Selective adsorption performance of nitrogen on the synthesized zeolite X adsorbent was improved by the cation exchange of adsorbent. The zeolite X which had over $650m^2/g$ surface area was synthesized at the conditions of $SiO_2\;:\;Na_2O\;:\;H_2O\;:\;Al_2O_3$ = 2.5 : 3.5 : 150 : 1 mole ratio, $98^{\circ}C$ temperature and 18 h synthesized time in 50 L reactor. The metal ions Li, Ag, Ca, Br, Sr, etc. were investigated for ion exchange with zeolite X. Ag ion was showed the highest ion exchange rate among these metal ions and all metal ions were exchanged with Na ion at equivalent rate. Compared with the NaX adsorbent, the ion exchanged zeolite X adsorbent remarkably improved its adsorption performance of nitrogen at the conditions of $10{\sim}40^{\circ}C$ temperature and 0~9 atm pressure. At an equilibrium pressure under 0.5 atm, adsorption performance of nitrogen on the ion exchanged zeolite adsorbent increased in the order of Ag > Li > Ca > Sr> Ba > K, whereas at an equilibrium pressure over 1 atm showed in the order of Li > Ag > Ca > Sr > Ba > K. Nitrogen/oxygen separation factor of Li ion exchanged zeolite X adsorbent was 13.023 at the partial pressure of nitrogen/oxygen gas mixture similar to air and $20^{\circ}C$ adsorption temperature.

Adsorption Characteristics of Sr Ions by Coal Fly Ash-Based-Zeolite X using Response Surface Modeling Approach (반응표면분석법을 이용한 석탄회로 합성한 제올라이트 X에서의 Sr 이온 제거특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.719-728
    • /
    • 2017
  • In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (${\Delta}H^o$>0) and spontaneous (${\Delta}G^o$<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration ($X_1$), initial temperature ($X_2$), and initial pH ($X_3$) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient ($R^2=0.9937$) and the adjusted determination coefficient (adjusted $R^2=0.9823$) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.

Room Temperature Luminescence from ion Beam or Atmospheric Pressure Plasma Treated SrTiO3

  • Song, Jin-Ho;Seok, Jae-Gwon;Yeo, Chang-Su;Lee, Gwan-Ho;Song, Jong-Han;Sin, Sang-Won;Choe, Jin-Mun;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.530-531
    • /
    • 2013
  • 3 MeV protonirradiated SrTiO3 (STO) single crystal exhibits a blue and green mixed luminescence. However, the same proton irradiated STO deposited with very thin Pt layer does not show any luminescence. This Pt layer involved in preventing the damage caused by arcingthat comes from tens of kV surface voltage build-up due to secondary electron induced charge up at the surface of insulator during ion beam irradiation. It implies that luminescence of ion irradiated STO originated from the modified STO surface layer caused by arcing rather than direct ion beam irradiation effect. Atmospheric pressure plasma, a simple and cost-effective method, treated STO also exhibits the same kind of blue and green mixed luminescence as the ion beam treated STO, because this plasma also creates a surface damage layer by arcing.

  • PDF

Room-Temperature Luminescence from Ion Beam or Atmospheric Pressure Plasma-Treated SrTiO3

  • Song, J.H.;Choi, J.M.;Cho, M.H.;Choi, E.J.;Kim, J.;Song, J.H.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.261-264
    • /
    • 2014
  • $SrTiO_3$ (STO) single crystal irradiated with a 3-MeV proton beam exhibits blue and green mixed luminescence. However, the same proton beam when used to irradiate STO with a very thin layer of deposited Pt does not show any luminescence. This Pt layer prevents any damage which may otherwise be caused by arcing, which stems from the accumulated surface voltage of tens of kV due to the charge induced by secondary electrons on the surface of the insulator during the ion beam irradiation process. Hence, the luminescence of ion-irradiated STO originates from the modification of the STO surface layer caused by arcing rather than from any direct ion beam irradiation effect. STO treated with atmospheric-pressure plasma, a simple and cost-effective method, also exhibits the same type of blue and green mixed luminescence as STO treated with an ion beam, as the plasma also creates a layer of surface damage due to arcing.