• 제목/요약/키워드: Squeezing pressure

검색결과 31건 처리시간 0.021초

Assessment of time-dependent behaviour of rocks on concrete lining in a large cross-section tunnel

  • Mirzaeiabdolyousefi, Majid;Nikkhah, Majid;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • Tunneling in rocks having the time-dependent behavior, causes some difficulties like tunnel convergence and, as a result, pressure on concrete lining; and so instability on this structure. In this paper the time-dependent behaviour of squeezing phenomenon in a large cross section tunnel was investigated as a case study: Alborz tunnel. Then, time-dependent behaviour of Alborz tunnel was evaluated using FLAC2D based on the finite difference numerical method. A Burger-creep viscoelastic model was used in numerical analysis. Using numerical analysis, the long-time effect of squeezing on lining stability was simulated.This study is done for primary lining (for 2 years) and permanent lining (for 100 years), under squeezing situations. The response of lining is discussed base on Thrust Force-Bending Moment and Thrust Force-Shear Force diagrams analysing. The results determined the importance of consideration of time-dependent behaviour of tunnel that structural forces in concrete lining will grow in consider with time pass and after 70 years can cause instability in creepy rock masses section of tunnel. To show the importance of time-dependent behavior consideration of rocks, elastic and Mohr-Coulomb models are evaluated at the end.

중력파 검출기의 양자 잡음 저감을 위한 필터 공동기 기반 주파수 의존 양자조임 기술과 KAGRA의 필터 공동기 제작을 위한 국제협력연구 (Frequency dependent squeezing for gravitational wave detectors using filter cavity and international collaboration of a filter cavity project for KAGRA)

  • 박준규;이성호;김창희;김윤종;정의정;제순규;성현철;한정열
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.37.3-38
    • /
    • 2021
  • Radiation pressure noise of photon and photon shot noise are quantum noise limitation in interferometric gravita-tional wave detectors. Since relationship between the two noises is position and momentum of the Heisenberg uncertainty principle, quantum non-demolition (QND) technique is required to reduce the two noises at the same time. Frequency dependent squeezing using a filter cavity is one of realistic solutions for QND measurement and experimental results show that its cutting-edge performance is sufficient to apply to the current gravitational wave detectors. A 300m filter cavity is under construction at adv-LIGO. KAGRA (gravitational wave detector in Japan) has also started international collaboration to build a filter cavity. Recently we joined the filter cavity project for KAGRA. Current status of squeezing and filter cavity research at KASI and details of the KAGRA filter cavity project will be presented.

  • PDF

비선형 베어링 요소를 이용한 탄성 추진 축계정렬에 관한 고찰 (A Study on Elastic Shaft Alignment Using Nonlinear Soaring Elements)

  • 정준모;최익흥;신상훈
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.259-267
    • /
    • 2005
  • The effects of hull flexibility on shaft alignment are growing as ship sizes are increased mainly for container carrier and LNG carrier. In order to consider hull flexibility on a propulsion shafting system, standardization of ship service conditions is necessary because hull deformation is continuously variable according to ship service conditions. How to summarize ship service conditions is suggested based on practically applicable four viewpoints : hull, engine, loading and sea status. Effects of the external forces acting on a ship propulsion shafting system are generally commented. Several design criteria regulated by classification societies are pointed at issue which seems to have Insufficient technical background. A qualitative verification is carried out to point out the invalidity of the assumption of effective supporting position. In this work, an elastic nonlinear multi-supporting bearing system is introduced as a key concept of the elastic shaft alignment. Hertz contact theory is proved to be more proper one than projected area method in calculation of the nonlinear elastic stiffness of the bearing, The squeezing and oil film pressure calculations in the long journal bearing like an after stern tube bearing are recognized as a necessary process for elastic shaft alignment design.

저온 나노임프린트 공정에서 압력과 폴리머 레지스트 초기 두께의 영향 (Effect of Pressure and Initial Polymer Resist Thickness on Low Temperature Nanoimprint Lithography)

  • 김남웅;김국원;신효철
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.68-75
    • /
    • 2009
  • A major disadvantage of thermal nanoimprint lithography(NIL) is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to make the processing temperature lower Accordingly, it is necessary to determine the effects on the processing parameters for thermal NIL at reduced temperatures and to optimize the parameters. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing and filling of thin polymer films into nanocavities during the low temperature thermal NIL have been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality; Pressure and initial polymer resist thickness dependency of cavity filling behaviors has been investigated.

무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구 (Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제21권6호
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

신생아의 항문직장내압검사 (Anorectal Manometry in Normal Neonates)

  • 서정민;최윤미;이은희;전용훈;안승익;홍기천;신석환
    • Advances in pediatric surgery
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 1999
  • To estimate the normal anal canal pressure in neonates, anal manometry was performed in 46 normal babies less than 6 days of age. Twenty-eight of the subjects were boys and 18 girls. All the subjects passed meconium within 24 hours after birth. Birth weights were above 2.4 kg. There were no sexual differences in birth weight, birth height, gestational age, postnatal age, or Apgar score (p<0.05). The mean manometry values were; anal sphincter length $18.6{\pm}3.9$ mm, high pressure zone (HPZ) $9.2{\pm}3.6$ mm, vector volume $2027.2{\pm}2440.7$ mmHg2cm, maximum pressure $42.3{\pm}17.4$ mmHg, and position of the maximum pressure $6.0{\pm}22.4$ mm. Only the HPZ of boys was longer than those of girls (p=0.005). In squeezing state, HPZ and the position of maximun pressure were not changed from resting state. HPZ, vector volume, and maximum pressure in boys were higher than those in girls. As the birth weight increased, the anal sphincter length (p=0.001) and the HPZ increased (p=0.047). The resting pressures of the anal canal were evaluated in three portions; /23 upper portion, $12.8{\pm}8.6$ mmHg, middle portion, $20.3{\pm}10.8$ mmHg, and lower portion, $26.1{\pm}12.9$ mmHg. These normal values may serve as guidelines for the evaluation, diagnosis and treatment of neonatal anal diseases.

  • PDF

Shear behavior of foam-conditioned gravelly sands: Insights from pressurized vane shear tests

  • Shuying Wang;Jiazheng Zhong;Qiujing Pan;Tongming Qu;Fanlin Ling
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.637-648
    • /
    • 2023
  • When an earth pressure balance (EPB) shield machine bores a tunnel in gravelly sand stratum, the excavated natural soil is normally transformed using foam and water to reduce cutter wear and the risk of direct muck squeezing out of the screw conveyor (i.e., muck spewing). Understanding the undrained shear behavior of conditioned soils under pressure is a potential perspective for optimizing the earth pressure balance shield tunnelling strategies. Owing to the unconventional properties of conditioned soil, a pressurized vane shear apparatus was utilized to investigate the undrained shear behavior of foam-conditioned gravelly sands under normal pressure. The results showed that the shear stress-displacement curves exhibited strain-softening behavior only when the initial void ratio (e0) of the foam-conditioned sand was less than the maximum void ratio (emax) of the unconditioned sand. The peak and residual strength increased with an increase in normal pressure and a decrease in foam injection ratio. A unique relation between the void ratio and the shear strength in the residual stage was observed in the e-ln(τ) space. When e0 was greater than emax, the fluid-like specimens had quite low strengths. Besides, the stick-slip behavior, characterized by the variation coefficient of measured shear stress in the residual stage, was more evident under lower pressure but it appeared to be independent of the foam injection. A comparison between the results of pressurized vane shear tests and those of slump tests indicated that the slump test has its limitations to characterize the chamber muck fluidity and build the optimal conditioning parameters.

용탕단조법으로 제조된 AC4C 합금기 세라믹강화 복합재료의 특성연구 (Characterization of the Ceramic Reinforced AC4C Matrix Composites Processed by Squeeze Casting)

  • 김억수
    • 한국주조공학회지
    • /
    • 제25권2호
    • /
    • pp.88-94
    • /
    • 2005
  • The microstructure and mechanical property of the ceramic reinforced AC4C matrix composites processed by squeeze casting were investigated. In this study Kaowool and Saffil fiber which are ceramic reinforcements are used as preform materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Kaowool and Saffil/AC4C composites, 7.5 MPa squeezing pressure and minimum 7.0% binder amount are needed to produce sound composite materials. The tensile strength of Kaowool/ AC4C composite is lower than the matrix metal and this can be explained by the melt unfilling due to formed cluster of Kaowool reinforcements. But the mechanical properties of hardness, wear resistance and thermal expansion are better than the matrix materials due to the strengthening effect of ceramic reinforcements.

용탕단조법에 의한 Ni, Ni-Cr 다공질 발포금속 강화 AC4C 합금기 복합재료에 관한 연구 (Characterization of the Ni and Ni-Cr Porous Metal Reinforced AC4C Matrix Composites Fabricated by Squeeze Casting)

  • 김억수
    • 한국주조공학회지
    • /
    • 제25권2호
    • /
    • pp.80-87
    • /
    • 2005
  • The microstructure and mechanical property of the Ni and Ni-Cr porous metal reinforced AC4C matrix composites fabricated by squeeze casting were investigated. In this study Ni, Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition shows that atsolutionizing temperature of above $520^{\circ}C$, the interfacial reaction zone increases proportionally with heat treatment time and the reaction products formed by interfacial reactions are mainly composed by $Al_{3}Ni$ and $Al_{3}Ni_{2}$ phases.

중력주조 및 직접가압주조 7XXX계 Al합금의 미세조직에 관한 연구 (The Study on the Microstructures in Direct Squeeze cast and Gravity Cast of 7XXX Al Wrought Alloy)

  • 김석원;김대영;우기도;김동건
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.47-53
    • /
    • 1999
  • Squeeze casting process has been used in the field of a commercial manufacturing method, in which metal is enforcedly solidified under pressure enough to prevent the cast defects such as either gas porosity or shrinkage defect. In this paper, to clarify the relationship between applied pressures and macro ${\cdot}$ microstructural behaviors in gravity and direct squeeze casts, specimens were cast by various squeezing pressures during solidification of 7000 series Al wrought alloy in the metal die designed specially. The applied pressures used in this study were 0, 25, 50, and 75 MPa. The microstructural morphologies of squeeze cast were more fine and dense with increasing the applied pressures, because of the greater solidification rate of billet resulting from the applied pressure. A normal segregation phenomenon of an increasing in amount of eutectics towards the center of the billet was observed for squeeze casts, whereas gravity cast showed an inverse segregation phenomenon of an increasing in amount of eutectics towards the edge in the billet. This change in segregation pattern which is normal or inverse is due to a higher radial temperature gradient and reduced time in the semi solid state for squeeze casting.

  • PDF