• Title/Summary/Keyword: Squeeze Pressure

Search Result 92, Processing Time 0.016 seconds

A Study on the Mechanical Properties of AC8A/$Al_2O_3$ Composites. (용탕단조법에 의한 AC8A/$Al_2O_3$ 복합재료의 기계적 성질에 관한 연구)

  • Kim, Ki-Bae;Kim, Kyoung-Min;Cho, Soon-Hyung;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.475-481
    • /
    • 1991
  • In this study the fabrication technology and mechanical properties of AC8A/$Al_2O_3$ Composites by squeeze casting process were investigated to develope for application as the piston materials that require good friction, wear resistance, and thermal stability. AC8A/$Al_2O_3$ composistes without a porosity and the break of preform were fabricated at the melt temperature of $740^{\circ}C$, the preform temperature of $500^{\circ}C$, and mold temperature of $400^{\circ}C$ under the applied pressure of $1200kg/cm^2$ as the results of the observation of microstructures. As the results of this study, the tensile strength of AC8A/$Al_2O_3$ composites was not increased linearly with $Al_2O_3$ volume fraction and so it seemed not to agree with the rule of mixture, which had been used often in metal matrix composite. Also the tensile strength after thermal fatigue test was little different from that before the test. Consequently it was thought that AC8A/$Al_2O_3$ composites fabricated under our experimental conditions had a good thermal stability and subsequently a good interface bonding. Wear rate(i.e., volume loss per unit sliding distance) of AC8A/$Al_2O_3$ composites was decreased with $Al_2O_3$ volume fraction and the sliding speed at both room temperature and $250^{\circ}C$ and so there was a good correlation between wear rate and hardness. Also the wear rate of AC/8A20% $Al_2O_3$ composities was obtained the value of $1.65cm^3/cm$ at sliding speed of 1.14m/sec as compared with about $3.0\;{\times}10^{-8}cm^3/cm$ hyereutectie Al-Si alloy(Al-16%Si-2%Cu-1%Fe-1%Ni), which applied presently for piston materials. The wear behavior of $Al_2O_3$ composites was observed to a type of abrasive wear by the SEM view of wear surface.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF