• 제목/요약/키워드: Squeeze Infiltration Method

검색결과 17건 처리시간 0.019초

$9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성 (Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH)

  • 박원조;이광영;허선철
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.

$Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성 (Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials)

  • 임흥준;김영한;한경섭
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.

용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석 (Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs)

  • 정창규;변현중;정성욱;남현욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.319-324
    • /
    • 2001
  • A finite element model for the process of squeeze casting for metal matrix composites (MMCs) in cylindrical mold is developed. The fluid flow and the heat transfer are the fundamental phenomena in the squeeze casing process. To describe heat transfer with solidification of molten aluminum, the energy equation in terms of temperature and enthalpy are applied to two dimensional axisymmetric model which is similar to the experimental system. And one dimensional flow model is employed to simulate the transient metal flow. The direct iteration technique was used to solve the resulting nonlinear algebraic equations. A computer program is developed to calculate the enthalpy, temperature and fluid velocity. Cooling curves and temperature distribution during infiltration and solidification are calculated for pure aluminum. The temperature is measured and recorded experimentally. At two points of the perform inside and one point of the mold outside, thermocouple wire are installed. The time-temperature data are compared with the calculated cooling curves. The experimental results show that the finite element model can estimate the solidification time and predict the cooling process.

  • PDF

용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석 (Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs)

  • 정창규;정성욱;남현욱;한경섭
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2104-2113
    • /
    • 2002
  • A finite element model is developed for the process of squeeze casting of metal matrix composites (MMCs) in cylindrical molds. The fluid flow and the heat transit. are fundamental phenomena in squeeze casting. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy are applied in an axisymmetric model which is similar to the experimental system. A one dimensional flow model simulates the transient metal flow. A direct iteration technique was used to solve the resulting nonlinear algebraic equations, using a computer program to calculate the enthalpy, temperature and fluid velocity. The cooling curves and temperature distribution during infiltration and solidification were calculated fer pure aluminum. Experimentally, the temperature was measured and recorded using thermocouple wire. The measured time-temperature data were compared with the calculated cooling curves. The resulting agreement shows that the finite element model can accurately estimate the solidification time and predict the cooling process.

고 내마모성 혼합 금속복합재료의 연삭마모 (Abrasive Wear of Hybrid Metal Matrix Composites for High Wear Resistance)

  • 송정일
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.12-22
    • /
    • 1999
  • 알루미늄 기지 금속복합재료는 비강도, 비강성, 경도가 뛰어난 것으로 널리 알려져 있으며, 높은 마모 저항으로 인해 점점 중요한 재료로 인식되고 있다. 본 연구에서는 AC2B 알루미늄 합금을 기지재로 하고, 알루미나($Al_2O_3$) 및 탄소를 단섬유를 보강재로한 혼합금속복합재료를 제조하였다. 다양한 상대 마모 속도하에서의 연삭 마모 시험을 통해 금속복합재료의 상온 및 고온 마모 거동을 규명하였다. 금속복합재료의 마모 저항은 고속에서 보강재로 인해 향상되었다. 탄소 혼합 금속복합재료의 마모 저항은 탄소의 고체 윤활 효과로 인해 알루미나($Al_2O_3$) 복합재료보다 우수하였으며, 특히 고속에서의 내마모성이 가장 향상되었다. 금속복합재료의 마찰계수는 상온과 고온에서 상대 속도의 변화에도 큰 차이를 보이지 않았다.

  • PDF

열반복 시험 및 유한요소해석을 통한 Mg/Mg-Al18B4O33 경사기능 재료의 열피로특성에 관한 연구 (A study on the Thermal Fatigue Properties of Mg/Mg-Al18B4O33 Functionally Graded Material by Thermal Cycling Test and Finite Element Method)

  • 이욱진;양준성;최계원;박용하;박봉규;박익민;박용호
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.538-544
    • /
    • 2008
  • MMCs were manufactured in two different forms. One was two-layered non FGM composite and the other was four-layered FGM composite. The matrix used in this study was AZ31 magnesium alloy and the reinforcement was $Al_{18}B_4O_{33}$. The composite materials contained reinforcement fibers with a volume fraction of 0, 15, 25 and 40%. Squeeze infiltration method was used for the fabrication of each block. The thermal properties of the FGM alloy and composite joints were studied by conducting thermal cycling tests. The numerical calculation (the finite elements method-FEM) results exhibited a good agreement with the experimental results. Thermal stresses induced by thermal cycling test were clearly reduced in the functionally graded materials.

3차원 Unit Cell 모델을 이용한 알루미늄 보레이트 휘스커 강화 Mg 복합재료의 유효 탄성계수 및 계면강도의 분석 (Analysis of Effective Elastic Modulus and Interfacial Bond Strength of Aluminum Borate Whisker Reinforced Mg Matrix Composite by Using Three Dimensional Unit Cell Model)

  • 손재형;이욱진;박용하;박용호;박익민
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.469-475
    • /
    • 2010
  • In this study, the interfacial bond strength of a squeeze infiltrated $Al_{18}B_{4}O_{33}$/AS52 Mg composite was investigated by using a finite element method. Three types of Mg composites with volume fractions of 15, 25 and 35% were fabricated. Three-dimensional models of the composite were developed by using a unit cell model in order to determine the effective elastic modulus of the metal matrix composite and the interfacial bond strength between the whisker and magnesium matrix. After modeling, numerical results were compared with the experimental tensile test results of $Al_{18}B_{4}O_{33}$/AS52 Mg composites. The results showed that the effective modulus of the composite strongly depended on the interfacial strength between the matrix and reinforcement. Based on the numerical and experimental findings, it was found that the strong interfacial bond was achieved by the interfacial reaction product of 30 nm thick MgO, which led to an improvement in the mechanical properties of the $Al_{18}B_{4}O_{33}$/AS52 Mg composites.