• Title/Summary/Keyword: Squeal noise

Search Result 122, Processing Time 0.022 seconds

Linear Stability Analysis of a Rotating Disc Brake for Squeal Noise (회전 디스크 브레이크의 스퀼소음에 대한 선형안정성 연구)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1092-1098
    • /
    • 2009
  • The squeal propensity of an automotive disc brake system is studied in the theoretical and computational manner. The rotating disc is in contact with two stationary pads and the nonlinear friction is engaged on the contact surface. The friction-coupled equations of motion are derived in the finite element(FE) of the actual brake disc and pad. From the general definition of friction force, the rotation and in-plane mode effects can be included properly in the brake squeal model. The eigenvalue sensitivity analysis and the mode shape visualization at squeal frequencies are also conducted for the detailed investigation. It is found that the squeal propensity is strongly influenced by rotation effect and the in-plane mode can be involved in squeal generation.

The study on the influence of contact pressure distribution on brake squeal analysis (브레이크 스퀼 해석에서 접촉압력분포의 영향에 관한 연구)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Uk;Boo, Kwang-Seok;Kim, Heung-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1120-1124
    • /
    • 2007
  • Recently in the automotive brake industry brake squeal noise has become one of the top automotive quality warranty issues. The contact pressure is used to predict friction coupling in the brake squeal analysis. The formulation of friction coupling has performed by nonlinear static analysis prior to the complex eigenvalue analysis. This paper proposes a validation methodology of squeal analysis using modal testing and contact analysis and examines the effect of predicted contact pressure that leads to the discrepancy between unstable complex mode and squeal frequency. This studies compose a three step validation process : examining the modal characteristics of component and assembly loaded contact pressure using modal testing and FEM analysis and verifying the contact pressure distribution using nonlinear static analysis and experiment. Finally, the unstable modes from complex eigenvalue analysis and realistic squeal frequency from the noise dynamometer are investigated.

  • PDF

Analysis of the Front Disk Brake Squeal Using Kriging Method (크리깅기법을 이용한 전륜 디스크 브레이크 모델의 스퀼 저감 해석)

  • Sim, Hyun-Jin;Park, Sang-Gil;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1042-1048
    • /
    • 2008
  • Disc brake noise is an important customer satisfaction and warranty issue for many manufacturers as indicated by technical literature regarding the subject coming from Motor Company. This research describes results of a study to assess disk brake squeal propensity using finite element methods and optimal technique (Kriging). In this study, finite element analysis has been performed to determine likely modes of brake squeal. This paper deals with friction-induced vibration of disc brake system under contact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigen-values are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model. In this paper, Kriging from among the meta-modeling techniques is proposed for an optimal design scheme to reduce the brake squeal noise.

An Experimental Study of the Curve Squeal Noise (곡선부 스킬소음 발생 메커니즘의 실험적 연구)

  • Kim, Kwan-Ju;Park, Jin-Kyu;Kim, Beom-Soo;Kim, Jae-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.176-181
    • /
    • 2008
  • This paper presents results from experimental analysis of a friction-driven wheel responsible for generating wheel squeal noise. Squeal noise generating mechanism has been examined under the laboratory condition by the model rig on a small scale. Creep characteristics and squeal noise were observed by changing the possible variables, such as relative velocities and friction coefficients in time- and frequency-domain.

Squeal Test Using Lab-Scale Brake Dynamometer for Pad Angle and Negative-slope (랩스케일 브레이크 다이나모 메터를 이용한 패드각도 및 음의 기울기에 따른 스퀼 소음 실험 연구)

  • Nam, Jae-Hyun;Cho, Byung-Jae;Kang, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3158-3163
    • /
    • 2013
  • In this study, squeal noise test was conducted by using the lab-scaled brake dynamometer. Squeal conditions with respect to the angle of the brake pads ($34^{\circ}30^{\circ}26^{\circ}$) and negative slope, were studied. Squeal frequency of the In-plane-like mode was confirmed by hammering test and finite element analysis. This Squeal mode was difficult to control by the pad angle variation. Also the squeal sound was found to be periodic signal which has higher harmonic components. Squeal noise is independent of the negative slope. It implies that squeal noise can reach the stick-slip oscillation.

Feasibility Study of Squeal Noise Reduction using Magneto-rheological Elastomer (자기유변탄성체를 이용한 스퀼 소음 저감 타당성 연구)

  • Song, HyukGeun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.274-278
    • /
    • 2020
  • This study investigates the possibility of reducing squeal noise generated at the contact point between an elastomer and glass by using the properties of a magneto-rheological elastomer (MRE) whose stiffness changes with the application of a magnetic field. Previously, squeal noise was mainly observed in the unstable section caused by the weakening of friction due to velocity. Previous studies have shown that squeal noise decreases as the stiffness increases. Accordingly, this study is conducted to control the unstable area of the friction curve and to reduce the noise by inducing the stiffness change of the MRE by applying a magnetic field. The friction, vibration, and noise characteristics are measured using a reciprocating friction tester. The frequency ranges of vibration and noise measured with the accelerometer and sound sensor show similar results. When a magnetic field is applied to the MRE, there is significantly lower noise compared with the case without the application of the magnetic field. The average coefficient of friction decreases with the application of the magnetic field. The maximum coefficient of friction increases rapidly at the turning point and decreases when the magnetic field is applied. This shows that the mechanical properties of the MRE change due to the magnetic field, and the noise and friction coefficient also decrease.

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

A Study of the Squeal Noise of a Disc Brake System Using FEM (유한 요소법을 이용한 디스크 브레이크 스퀼 소음 해석)

  • Choi, Hyoung-Gil;Jeong, Ji-Deok;Kang, Ho-Won;Lee, Jang-Moo;Chung, In-Seung;Park, Choon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.630-634
    • /
    • 2001
  • Predicting brake squeal noise in design stage can be beneficial to reducing the expense of development. In this paper, the possibility of pre-estimating squeal phenomena of a disc brake system was investigated. To preestimate squeal phenomena, complex eigenvalue analysis was performed for brake system. The evaluation of noise dynamometer test verified the prediction and it corresponded with the result of complex eigenvalue analysis.

  • PDF

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

A Study on Squeal Noise Robustness Analysis to Improve Composite Brake Stability of High Performance and Eco-Friendly Vehicles (고성능 및 친환경 차량의 복합재 브레이크 안정감 향상을 위한 스퀼 노이즈 강건성 분석에 관한 연구)

  • Shim, J.H.;Lee, J.H.;Shin, U.H.;Lim, D.W.;Hyun, E.J.;Jeo, T.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.32-40
    • /
    • 2021
  • Composite material is very attractive because it has excellent mechanical property and is possible to lightweight due to the low density. However, composite material is less used compared to other systems in the chassis system because it is very hard to solve NVH problem when composite material is applied to vehicle. Especially, reducing squeal noise of composite brake system is essential to apply it to vehicle successfully. In this paper, we present a new solution to reduce squeal noise of composite brake system. To achieve this goal, we analyze main causes of noise using RCA (Root Cause Analysis), CA (Contradiction Analysis) and sequentially get IFR (Ideal Final Result) to solve the problem. Next, we define the function of composite brake system and derive control factors and noise factors. A variety of tests for factors like chamfer, slot, damping shim, underlayer of brake pad are done. In addition, we analyze level of contribution for control factors theoretically. Finally, we get the effective solution for reducing squeal noise.