• Title/Summary/Keyword: Squat exercise

Search Result 132, Processing Time 0.031 seconds

The Study on Analysis of Muscle Activity during Sling Squat Exercise according to Rope Type (로프 타입에 따른 슬링을 이용한 스쿼트 운동 시 근육의 활성화 비교 분석)

  • Woo, Hyun Ji;Kwon, Tae Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.311-319
    • /
    • 2020
  • Objective: The purpose of this study was to examine of this study is to study the effect of squat exercise on muscle activation in a sling device using various types of ropes and to propose an effective sling exercise method for strengthening the lower extremity strength. Method: 20 adult male subjects (age: 25.2±2.4 yrs, height: 176.5±3.2 cm, weight: 77.2±4.5 kg) participated in this study. In the experiment, a total of four squats were conducted: squat [SE], sling squat using inelastic rope [IR], sling squat using elastic rope [ER], and sling squat using two elastic ropes [TER]. Squats were performed 5 times for each condition, and a 60-second break was given for each condition to minimize muscle fatigue. The activation of biceps brachii, rectus femoris, gastrocnemius, and tibialis anterior muscles was measured. Results: It was found that the activation of all muscles was the lowest during the squat exercise [SE]. During the sling squat using inelastic rope [IR], the muscle activation of the biceps brachii was the highest. During the sling squat using elastic rope [ER], the activation of the rectus femoris, gastrocnemius, and tibialis anterior muscles was found to be the highest. In the sling squat using two elastic ropes [TER], most of the muscle activation was similar to that of the sling squat using inelastic rope [IR]. Conclusion: Our results of the experiment, it was found that sling squat exercise using elastic rope had a positive effect on the activation of all muscles. It is thought that performing a squat exercise under moderate weight load and unstable conditions, such as sling squat exercise using elastic rope, can increase the muscle activity of the lower limbs and perform more effective exercise effect than performing a conventional squat exercise under stable conditions. In the future, if research is conducted not only on adult men, but also on various ages and patients, it will be able to provide positive help in improving balance, stability and stamina through squat exercise.

A Study on the Balance of Stroke Patients According to Kneeling Squat Exercise and Standing Squat Exercise Positions (무릎스쿼트 운동과 스쿼트 운동 자세에 따른 뇌졸중 환자의 균형 비교 연구)

  • Go, Gwan-Hyeok;Kim, Byeong-Jo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose : The purpose of this research is to propose a more efficient exercising method by measuring and comparing the movement of center of pressure (COP) while hemiplegic stroke patients perform kneeling squat exercise and squat exercise. Methods : 17 hemiplegic stroke patients were instructed to perform kneeling squat exercises and squat exercises, and the research was designed as a cross-over study. For data collection, a pressure distribution measurement platform (PDM) was used to measure the movement area, length, speed, and distance from the center of the X-axis of center of pressure. The data was then analyzed through a paired t-test. Results : Kneeling squat exercises have been found to have a significantly smaller center of pressure movement area compared to that of squat exercise(p<.001), and the center of pressure movement length of kneeing squat exercise has also been found to be relatively shorter (p<.001). Moreover, kneeling squat exercises have been found to have a significantly slower center of pressure movement speed than squat exercise (p<.001), and kneeing squat exercise center of pressure movement distance from the center of the X-axis has been found to be significantly small (p<.001). Conclusion : Kneeling squat exercises have significantly decreased amounts of center of pressure movement area, distance, and speed compared to squat exercises. Also, the center of pressure movement distance from the center of the X-axis was relatively closer. This result seems to derive from patients performing their motions with wide base surfaces while being refrained from using unstable ankle joints during kneeing squat exercise. Therefore, it can be concluded that kneeing squat exercises show relatively balanced center of pressure movements between the paralyzed and non-paralyzed sides because kneeling squats show smaller shakes in the center of pressure.

The Effects of Lower Muscle Activity of Squat Exercise on Supporting Surface and Visual Feedback (지지면과 시각적 피드백의 차이에 따른 스쿼트 운동시 일부 하지 근 활성도에 미치는 영향)

  • Lee, Jin;Bang, Hyun-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.1
    • /
    • pp.20-30
    • /
    • 2018
  • Background: This study evaluates the effects of lower muscle activity of squat exercise on supporting surface and visual feedback. Methods: The subjects include 30 healthy subjects. To measure muscle activation of the lower limb during squat exercise(stable and unstable surface, visual and unvisual). For evaluation of muscle activation(rectus femoris, biceps femoris), was measured using the Electromyogram, EMG was used. Results: The results shows that Rectus Femoris(RF) and Biceps Femoris(BF) muscle activations were significantly (p<0.05) difference in unvisual-unstable surface(USUV), unvisual-stable surface(SUV), visual-unstable surface(USA), and visual-stable surface(SV) during squat exercise. Conclusion: Squat exercise can improve muscle activation of the lowe limb. particularly, unvisual-unstable surface during squat exercise can improve muscle activation of the lowe limb.

Comparison of the Effects of Squat Exercise, Bracing Exercise, and Aerobic Exercise on Lung Function (스쿼트 운동, 브레이싱 운동, 그리고 유산소 운동이 폐기능에 미치는 영향 비교)

  • Kim, Hyeon-Su;Kim, Chung-Yoo;Lee, Keon-Cheol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2022
  • Purpose : The purpose of this study is to investigate the effect of squat, bracing and aerobic exercise on lung function, which is known to be effective for strength training, on lung function. Methods : The study was conducted with 33 students from Busan K university. Eleven students were assigned to squats, bracing, and aerobic exercise, six weeks three times a week. In order to measure lung activity, pony Fx manufactured the change amount of FVC (forced vital capacity), FEV1 (Forced expiratory volume at one second), and FEV1/FVC % (forced vital capacity/forced expiratory volume at one second) was analyzed after inputting the information of experimental group A and B controls. As a method of measurement, the difference between the three groups was analyzed using repeated ANOVA. Results : As a result of analyzing the effects of squat, bracing, and aerobic exercise for 6 weeks, all values of FVC, FEV1, FEV1/FVC % were increased from 0 weeks to 6 weeks except FEV1/FVC %. There was no significant difference in FVC from week 3 to week 6. In the squat, bracing, and aerobic exercise, the changes in spirometry showed that the FVC, FEV1, and FEV1/FVC % values in bracing exercise were significantly increased with time than before exercise. As a result of analyzing the changes in the spirometry of squat, bracing, and aerobic exercise, the FVC, FEV1, FEV1/FVC % values in the squat exercise showed statistically significant difference according to the period, but the lowest increase among the three groups. Conclusion : In conclusion, aerobic, bracing and squat exercises all had a significant impact on improving lung function. Therefore, even without aerobic exercise, squat or bracing exercise alone can be expected to improve lung function.

Comparison of Muscle Activities of Trunk and Lower Limb during Bow and Squat Exercises

  • Shon, Ji-won;Lim, Hyung-won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • Purpose: The purposes of this study were to examine muscle activities of trunk and lower limb during squat and 108 bows exercises and to provide objective data for establishing a training method for improving muscle strength of trunk and lower limb. Methods: Twenty normal healthy subjects participated in this study. Each exercise was divided into five periods. Muscle activities of trunk and lower limb in each period of both 108 bows and squat exercises were measured and analyzed by independent t-test. Results: In starting, mid-flexion, mid-extension, and end period muscle activities obtained from 108 bows exercise were significantly higher than those from squat exercise. However, in the final flexion period, muscle activities of multifidus, elector spinae, rectus femoris, biceps femoris, and tibialis anterior from squat exercise were significantly higher than those from bow exercise. Conclusion: In this study, high muscle activities in most muscles of trunk and lower limb were observed from all periods of 108 bows exercise except the final flexion period. Therefore, it is likely that 108 bows exercise rather than squat exercise is more suitable for high strength exercise to improve muscle strength of trunk and lower limb and thus will be applicable for strengthening muscles of trunk and lower limb of patients.

Immediate Effects of the Pronation Squat on the Genu Varum and the Muscles Around the Knee (엎침 스쿼트 운동이 안굽이와 무릎 주위 근육에 미치는 즉각적 효과)

  • Kim, Hyeon-Su;Kim, Kyoung-Don
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.299-309
    • /
    • 2021
  • Purpose : The purpose of this study was to compare the ankle pronation squat with the general squat and investigate the effect on the geun varum and the muscles around the knee. Methods : Subjects were chosen as the target for squat exercise with the distance between the knees more than 5 cm. The selected 30 students were randomly divided into 15 pronation squat group and 15 general squat group, and performed five sets movements 20 times. Global postural system (GPS) and digital goniometer were used to check the distance between the knees and the Q angle, and muscle activity was measured with EMG during squat exercise. Results: The result is as follows. First, as a result of analyzing the change in the distance between the knees, the distance between the knees decreased and the Q angle increased in the pronation squat group after exercise. Second, as a result of analyzing the change in muscle activity of the peroneus longus, the muscle activity increased in the pronation squat group after exercise, and it was more effective than the general squat group. Third, as a result of analyzing the change in the VMO (vastus medialis oblique) and VL (vastus lateralis) muscle activity ratio, the activity ratio of the pronation squat group increased after exercise, and the imbalance in the VMO/VL muscle activity was decreased. Conclusion: The pronation squat exercise applied to the ankle will greatly affect what is made into a balanced leg as decreased of the distance between knees, increased of Q angle, increased of the muscle activity of the peroneus longus and the ratio of VMO/VL.

Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth

  • Jang, Tae Su;Lee, Dong Sub;Kim, Ki Hong;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.152-160
    • /
    • 2021
  • The purpose of this study was to investigate the difference in the number of repetitions and the change in electromyographic response during the maximum speed squat exercise according to the depth conditions and the maximum speed squat exercise according to the time of each depth. Ten men in their 20s were selected as subjects and the maximum speed squat was performed for one minute in three environmental conditions (ground, knee depth, waist depth). We found that the number of repetitions according to the depth of water showed a significant difference, and as a result of the post-mortem comparison, the number of repetitions was higher in the ground condition and the knee depth than in the waist depth. And the muscle activity of rectus abdominis, erector spinae, rectus femoris, biceps femoris was increased during ground squat exercise, activity of all muscle was decreased during knee depth squat exercise, and activity of rectus abdominis, erector spinae, biceps femoris, tibialis anterior, gastrocnemius was decreased during waist depth squat. In conclusion, muscle activity of lower extremities during squat exercise in underwater environment can be lowered as the depth of water is deep due to buoyancy, but muscle activity of trunk muscles can be increased rather due to the effect of viscosity and drag.

Effects of Squat Exercise Using Balls on the Gap Interval between Knees, Q-angle, Muscle Activity in Women with Genu-Varum (안굽이무릎을 가진 여성에게 볼을 이용한 스쿼트 운동이 무릎사이 간격과 Q각, 근 활성도에 미치는 효과)

  • Lee, Keoncheol;Han, Jiwon;Bae, Wonsik
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • Purpose : The purpose of this study is to investigate the effect of squat exercise using a ball on the gap between knees and Q angle of a subject with a genu-varum, and to prove the effect, to provide a clinical basis for developing into a knee correction exercise program. Methods : As a result of posture measurement through GPS, 26 female with genu-varum with a knee length of 5 cm or more were studied. The group was randomly assigned to 13 squat exercise group using ball (experimental group) and 13 general squat exercise groups (control group). The experimental group placed the ball between both knees in a position where the distance between both feet was slightly wider than the shoulder width on a flat support surface, and fixed the ball, and then squat with the start signal. The control group squats without a ball. Each group performed three sets of exercise three times a week for six weeks. Before their exercise, after three and six weeks, EMG, GPS, digital goniometer measurement, the vastus medialis (VM), the vastus lateralis (VL), and the Q-angle were measured in the squat exercise posture. EMG was measured in squat exercise posture. Results : The distance between the knees was reduced. EMG is activated in group A, the group B experimental results showed the high activity of the VL. Q-angle had increased. But the experimental group increased more than the control group. Conclusion : We have confirmed through our experiments that the distance interval between the knees during squat exercises using a ball can be reduced. Furthermore, it would also be helpful to ensure the treatment of genu-varum.

Effect of the Resistance Direction by an Elastic Band on the VMO/VL Electromyographic Activity Ratio during Dynamic Squat Exercise (동적 스쿼트 운동시 탄력밴드를 이용한 저항방향이 내측광근/외측광근 근전도 활성비에 미치는 영향)

  • Nam, Ki-Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • Purpose: The purpose of this study was to identify the effect of anterolateral (45$^{\circ}$) and lateral (90$^{\circ}$) direction resistance, with using an elastic band, on the electromyographic(EMG) activity ratio of the vastus medialis oblique (VMO) and the vastus lateralis (VL) during squat exercise. Methods: The study subjects were 19 active people with no history of patellofemoral pain, limitation of range of motion or pain when performing squat exercise. A 'repeated measures within subjects' design was used. The subjects were asked to perform three repetitions of a 90$^{\circ}$ knee flexion squat exercise with anterolateral (45$^{\circ}$) and lateral (90$^{\circ}$) resistance and without resistance, respectively. The EMG activity of the VMO and VL were recorded by surface EMG electrodes and the results were normalized by the % MVIC value. Results: Repeated measures ANOVA's revealed that squat exercise with anterolateral (45$^{\circ}$) resistance produced significantly greater VMO/VL EMG activity ratio than that with lateral (90$^{\circ}$) resistance and without resistance (p=.013). Yet the result of contrast testing revealed that squat exercise with lateral (90$^{\circ}$) resistance showed no significant difference of the VMO/VL EMG activity ratio, as compared with squat exercise without resistance (p>0.05). Conclusion: The findings of this study suggest that squat exercise combining anterolateral (45$^{\circ}$) resistance can contribute positively to the patients with patellofemoral pain as they increase the VMO/VL EMG activity ratio.

  • PDF

Isolated Activation Ratio of the Quadriceps Femoris Muscle on Different Support Surfaces During Squat Exercise (스쿼트 운동 시 지지면 변화에 따른 넙다리네갈래근의 독립활성비율)

  • Kim, Yong-Hun;Kim, Byeong-Jo;Park, Du-Jin
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.125-132
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the isolated activation ratio of the quadriceps femoris muscle on different support surfaces during squat exercise. Methods: Twenty participants (10 males and 10 females) voluntarily agreed to participate in the research after receiving an explanation about the purpose and process of the study. Each participant performed squat exercises on three different support surfaces (a flat surface, a form roller, and an unstable surface). Muscle activities of the rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) were measured by electromyography. The isolated activation ratio of the quadriceps femoris muscle was calculated using the %isolation formula. Results: For the squat exercise, the %isolation value of the VM was significantly higher on the unstable surface than on the flat surface and form roller. In contrast, the %isolation values for the RF for the squat exercise were significantly higher on the flat surface and form roller than on the unstable surface. There was no significant differences in the %isolation values of the VL on the three different surfaces. Conclusion: The findings indicate that squat exercise on different surfaces results in differential activation of the quadriceps femoris muscle, which suggests that squat exercise on a multi-directional unstable surface could increase the isolated activation ratio of the VM.