• Title/Summary/Keyword: Squared error loss

Search Result 73, Processing Time 0.019 seconds

A Comparative Study for Several Bayesian Estimators Under Squared Error Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.371-382
    • /
    • 2005
  • The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

Hierarchical Bayes Estimators of the Error Variance in Two-Way ANOVA Models

  • Chang, In Hong;Kim, Byung Hwee
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.315-324
    • /
    • 2002
  • For estimating the error variance under the relative squared error loss in two-way analysis of variance models, we provide a class of hierarchical Bayes estimators and then derive a subclass of the hierarchical Bayes estimators, each member of which dominates the best multiple of the error sum of squares which is known to be minimax. We also identify a subclass of non-minimax hierarchical Bayes estimators.

Bayesian Estimations of the Smaller and Larger for Two Pareto Scale Parameters

  • Woo, Jungsoo;Lee, Changsoo
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.829-836
    • /
    • 2000
  • We shall derive Bayes estimators for he smaller and larger of two Pareto scale parameters with a common known shape parameter when the order of the scales is unknown and sample sizes are equal under squared error loss function. Also, we shall obtain biases and man squared errors for proposed Bayes estimators, and compare numerically performances for the proposed Bayes estimators.

  • PDF

Bayes Estimation of a Reliability Function for Rayleigh Model

  • Kim, Yeung-Hoon;Sohn, Joong-Kweon
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.445-461
    • /
    • 1994
  • This paper deals with the problem of obtaining some Bayes estimators and Bayesian credible regions of a reliability function for the Rayleigh distribution. Using several priors for a reliability function some Bayes estimators and Bayes credible sets are proposed and studied under squared error loss and Harris loss. Also the performances and behaviors of the proposed Bayes estimators are examined via Monte Carlo simulations and some numericla examples are given.

  • PDF

Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm (Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용)

  • Kang, Hyun-Gu;Seo, Dong-Sung;Lee, Byeong-seok;Kang, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.

Admissible Estimation for Parameters in a Family of Non-regular Densities

  • Byung Hwee Kim;In Hong Chang
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.52-62
    • /
    • 1995
  • Consider an estimation problem under squared error loss in a family of non-regular densities with both terminals of the support being decreasing functions of an unknown parameter. Using Karlin's(1958) technique, sufficient conditions are given for generalized Bayes estimators to be admissible for estimating an arbitrarily positive, monotone parametric function and then treat some examples which illustrate our results.

  • PDF

Bayesian Estimation of Shape Parameter of Pareto Income Distribution Using LINEX Loss Function

  • Saxena, Sharad;Singh, Housila P.
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.33-55
    • /
    • 2007
  • The economic world is full of patterns, many of which exert a profound influence over society and business. One of the most contentious is the distribution of wealth. Way back in 1897, an Italian engineer-turned-economist named Vilfredo Pareto discovered a pattern in the distribution of wealth that appears to be every bit as universal as the laws of thermodynamics or chemistry. The present paper proposes some Bayes estimators of shape parameter of Pareto income distribution in censored sampling. Asymmetric LINEX loss function has been considered to study the effects of overestimation and underestimation. For the prior distribution of the parameter involved a number of priors including one and two-parameter exponential, truncated Erlang and doubly truncated gamma have been contemplated to express the belief of the experimenter s/he has regarding the parameter. The estimators thus obtained have been compared theoretically and empirically with the corresponding estimators under squared error loss function, some of which were reported by Bhattacharya et al. (1999).

A Non-Linear Exponential(NLINEX) Loss Function in Bayesian Analysis

  • Islam, A.F.M.Saiful;Roy, M.K.;Ali, M.Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.899-910
    • /
    • 2004
  • In this paper we have proposed a new loss function, namely, non-linear exponential(NLINEX) loss function, which is quite asymmetric in nature. We obtained the Bayes estimator under exponential(LINEX) and squared error(SE) loss functions. Moreover, a numerical comparison among the Bayes estimators of power function distribution under SE, LINEX, and NLINEX loss function have been made.

  • PDF

Bayesian Estimation of Three-parameter Bathtub Shaped Lifetime Distribution Based on Progressive Type-II Censoring with Binomial Removal

  • Chung, Younshik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2747-2757
    • /
    • 2018
  • We consider the MLE (maximum likelihood estimate) and Bayesian estimates of three-parameter bathtub-shaped lifetime distribution based on the progressive type II censoring with binomial removal. Jung, Chung (2018) proposed the three-parameter bathtub-shaped distribution which is the extension of the two-parameter bathtub-shaped distribution given by Zhang (2004). Jung, Chung (2018) investigated its properties and estimations. The maximum likelihood estimates are computed using Newton-Raphson algorithm. Also, Bayesian estimates are obtained under the balanced loss function using MCMC (Markov chain Monte Carlo) method. In particular, BSEL (balanced squared error loss) function is considered as a special form of balanced loss function given by Zellner (1994). For comparing theirs MLEs with the corresponding Bayes estimates, some simulations are performed. It shows that Bayes estimates is better than MLEs in terms of risks. Finally, concluding remarks are mentioned.

Bayes Estimation of Stress-Strength System Reliability under Asymmetric Loss Functions

  • Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.631-639
    • /
    • 2003
  • Bayes estimates of reliability for the stress-strength system are obtained with respect to LINEX loss function. A reference prior distribution of the reliability is derived and Bayes estimates of the reliability are also obtained. These Bayes estimates are compared with corresponding estimates under squared-error loss function.

  • PDF