• 제목/요약/키워드: Square patterned jet

검색결과 2건 처리시간 0.014초

사각(四角)제트 그라우팅 공법에 의한 지반차수 특성 (Square Jet Grouting to Reduce Permeability)

  • 곽수정;백홍렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.188-197
    • /
    • 2005
  • Square patterned jet grouting technique is the soil improvement method that shakes the special end monitor left and right like as tail fin and mixing the soil and cement paste after cutting the soil in square shape by injecting the cement paste from installed two nozzles. The structure shape by jet grouting technique can be constructed in various shapes and sizes like as square, circle, and sector form designed by an engineer. Also, it can be constructed without waste material and reduced a construction time of work economically. In this study, the applicability of Square Jet Grouting to reduce permeability is estimated by FEM analysis and in-situ test in many cases which are various coefficient of permeability and breadth of grouting structure.

  • PDF

Inkjet Printable Transparent Conducting Oxide Electrodes

  • 김한기
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • We have demonstrated ink-jet printed indium tin oxide (ITO) and indium tin zinc oxide (IZTO) electrodes for cost-efficient organic solar cells (OSCs). By ink-jetting of crystalline ITO nano-particles and performing a rapid thermal anneal at $450^{\circ}C$, we were able to obtain directly patterned-ITO electrodes with an average transmittance of 84.14% and a sheet resistance of 202.7 Ohm/square without using a conventional photolithography process. The OSCs fabricated on the directly patterned ITO electrodes by ink-jet printing showed an open circuit voltage of 0.57 V, short circuit current of 8.47 mA/cm2, fill factor of 44%, and power conversion efficiency of 2.13%. This indicates that the ITO directly-patterned by ink-jet printing is a viable alternative to sputter-grown ITO electrodes for cost-efficient printing of OSCs due to the absence of a photolithography process for patterning and more efficient ITO material usage.

  • PDF