• Title/Summary/Keyword: Square of mean of error

Search Result 2,199, Processing Time 0.029 seconds

Generalized Ratio-Cum-Product Type Estimator of Finite Population Mean in Double Sampling for Stratification

  • Tailor, Rajesh;Lone, Hilal A.;Pandey, Rajiv
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.255-264
    • /
    • 2015
  • This paper addressed the problem of estimation of finite population mean in double sampling for stratification. This paper proposed a generalized ratio-cum-product type estimator of population mean. The bias and mean square error of the proposed estimator has been obtained upto the first degree of approximation. A particular member of the proposed generalized estimator was identified and studied from a comparison point of view. It is observed that the identified particular estimator is more efficient than usual unbiased estimator and Ige and Tripathi (1987) estimators. An empirical study was conducted in support of the theoretical findings.

A Study on Modified IGC Algorithm for Realtime Noise Reduction (실시간 소음 제거에 적합한 변형 IGC 알고리즘에 관한 연구)

  • Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.95-98
    • /
    • 2013
  • The LMS(Least Mean Square) algorithm, one of the most famous, is generally used because of tenacity and high mating spots and simplicity of realization, But it has trade-off between nonuniform collection and EMSE(Excess mean square error). To overcome this weakness, a variable step size is used widely, but it needs a lot of calculation loads. In this paper, we suggest changed algorithm in case of environment changes of cars and reduce amount of calculation as it uses original signal and noise signal of IGC(Instantaneous Gain Control) algorithm. In this paper, logarithmic function is removed because of real-time processing IGC. The performance of proposed algorithm is tested to adaptive noise canceller in automobile.

Robust Adaptive Beamforming Using Bayesian Beam-former : A Review

  • Lee, Hyun-Seok;Yoo, Kyung-Sang;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.95.6-95
    • /
    • 2002
  • 1. Introduction 2. Basic Concepts 2.1 Signal Model 2.2. Least-Mean-Square Adaptation Algorithm 3. Minimum Mean-Square Error 4. Bayesian Beamformer References

  • PDF

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

Performance Improvement of MCMA Equalizer with Parallel Structure (병렬 구조를 갖는 MCMA 등화기의 성능 개선)

  • Yoon, Jae-Sun;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.27-33
    • /
    • 2011
  • In digital communication system that the Modified Constant Modulus Algorithm (MCMA) reduced the use of the adaptive equalization algorithm to combat the Inter-symbol Interference (ISI). MCMA is relatively brief operation. The major point of MCMA that it only achieves moderate convergence rate and steady state mean square error (MSE). In this paper suggest, MCMA equalization improve the performance with parallel structure. It combines Modified Constant Modulus Algorithm(MCMA) and Modified Decision Directed(MDD) algorithm. By exploiting the inherent structural relationship between the 4-QAM signal's coordinates and 16-QAM signal's coordinates, another style of cost function for Modified Constant Modulus Algorithm(MCMA) is defined and If it happen to offset of received signals and MCMA is poor performance in order to overcome this because the paper combines apply for MCMA and MDD(Modified Decision Direct) algorithm. By computer simulation, we confirmed that the proposed PMCMA-MDD algorithm has the fater convergence rate and steady mean square error than the conventional MCMA.

Video De-noising Using Adaptive Temporal and Spatial Filter Based on Mean Square Error Estimation (MSE 추정에 기반한 적응적인 시간적 공간적 비디오 디노이징 필터)

  • Jin, Changshou;Kim, Jongho;Choe, Yoonsik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1048-1060
    • /
    • 2012
  • In this paper, an adaptive temporal and spatial filter (ATSF) based on mean square error (MSE) estimation is proposed. ATSF is a block based de-noising algorithm. Each noisy block is selectively filtered by a temporal filter or a spatial filter. Multi-hypothesis motion compensated filter (MHMCF) and bilateral filter are chosen as the temporal filter and the spatial filter, respectively. Although there is no original video, we mathematically derivate a formular to estimate the real MSE between a block de-noised by MHMCF and its original block and a linear model is proposed to estimate the real MSE between a block de-noised by bilateral filter and its original block. Finally, each noisy block is processed by the filter with a smaller estimated MSE. Simulation results show that our proposed algorithm achieves substantial improvements in terms of both visual quality and PSNR as compared with the conventional de-noising algorithms.

DAWAST Model Considering the Phreatic Evaporation in the Frozen Region (동결기 자유수면 지하수의 모관상승량을 고려한 DAWAST 모형)

  • 김태철;박철동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • The daily streamflow in the Yaluhe watershed located in the north-eastern part of China was simulated by DAWAST model and the water balance parameters of the model were calibrated by simplex method. Model verification tests were carried out. The range of root mean square error was 0.34∼1.50mm, that of percent error in volume was -16.9∼-62.0% and that of correlation coefficient was 0.727∼0.920. DAWAST model was revised to consider the phreatic evaporation from the ground water in the frozen soil by adjusting soil moisture content in the unsaturated layer at the end of the melting season. The results of estimation of the daily streamflow by the revised model were statistically improved, that is, the range of root mean square error was 0.31∼1.49mm, that of percent error in volume was -11.7∼-12.1%, and that of correlation coefficient was 0.810∼0.932. The accuracy of DAWAST model was improved and the applicability of DAWAST model was expanded to the frozen region.

  • PDF

Forecasting of Passenger Numbers, Freight Volumes and Optimal Tonnage of Passenger Ship in Mokpo Port (목포항 여객수 및 적정 선복량 추정에 관한 연구)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • The aim of this paper is to forecast passenger numbers and freight volumes in 2005 and it is proposed optimal tonnage of passenger ship. The forecasting of passenger numbers and freight volumes is important problem in order to determine optimal tonnage of passenger ship, port plan and development. In this paper, the forecasting of passenger numbers and freight volumes are performed by the method of neural network using back-propagation learning algorithm. And this paper compares the forecasting performance of neural networks with moving average method and exponential smooth method As the result of analysis. The forecasting of passenger numbers and freight volumes is that the neural networks performed better than moving average method and exponential smoothing method on the basis of MSE(mean square error) and MAE(mean absolute error).

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.