• Title/Summary/Keyword: Square Prism

Search Result 51, Processing Time 0.015 seconds

Development of a Predictive Model Describing the Growth of Listeria Monocytogenes in Fresh Cut Vegetable (샐러드용 신선 채소에서의 Listerio monocytogenes 성장예측모델 개발)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.