• 제목/요약/키워드: Square Prism

검색결과 51건 처리시간 0.019초

PIV를 이용한 펜스를 가진 정방형주 주위의 유동장 가시화 (The Visualization of the Flowfield around Square Prism Having Fences Using the PIV)

  • 노기덕;김광석;오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.94-99
    • /
    • 2008
  • The characteristics of the flowfield of a square prism having fences on the corner was investigated by the PIV. Strouhal numbers, velocity vectors and velocity profiles around the square prism were observed at various positions of the fences, and Reynolds number of $Re=0.6{\times}10^4{\sim}1.0{\times}10^4$. As the results in case of the prism having fences the Strouhal numbers were all smaller than in case of the prototype prism. In case of the prism having vertical fences on the front corners the concentrated intensity of the vorticity was the strongest and the size of separated shear layer was the largest. While in case of the prism having vertical fences on the rear corners the concentrated intensity of the vorticity was the weakest and the size of separated shear layer was the smallest. Also in this case, the flow separated in front corner was reattached around the rear corner and made circulation.

벽면 근처에 놓인 정방형주의 수직 분할판에 의한 유동 제어 (The Flow Control by a Vertical Splitter Plate for a Square Prism near a Wall)

  • 노기덕;조지룡;오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.94-100
    • /
    • 2012
  • 본 연구는 벽면 근처에 놓인 정방형주의 모서리에 수직 분할판을 부착하여 유체력 제어 효과를 양항력 측정실험 및 PIV에 의한 가시화 실험으로 조사한 것이다. 분할판의 폭은 정방형주 폭의 10% 로 했다. 실험변수로서는 수직 분할판의 부착 위치 및 벽면과 사각주 사이의 간격으로 하였다. 정방형주 중심에서 후류방향으로 3.0B(B: 정방형주 한 변 길이) 떨어진 곳에서 와도의 변화가 가장 명확했다. 수직 분할판의 위치 및 유무와 관계없이 간격비 0.4~0.6에서 평균양력계수 및 Strouhal 수의 변곡점이 나타났다. 정방형주 윗면의 뒷 모서리에 수직 분할판을 설치한 경우 항력이 감소하였으며 각 간격비 평균 5.0%의 항력 저감 효과를 얻었다. 정방형주 윗면 박리영역의 크기는 앞쪽 모서리에 수직 분할판을 설치한 경우가 가장 컸고, 원형의 정방형주, 뒷쪽 모서리에 수직 분할판을 설치한 순서로 작았으며, 평균항력계수는 이 박리영역의 크기에 비례했다.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

분리된 분할판에 의한 정방형주의 항력감소 (Drag Reduction on a Square Prism Using a Detached Splitter Plate)

  • 노기덕;윤성민;최동현;김재현;심은총
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.157-157
    • /
    • 2012
  • The Characteristics of the drag reduction of a square prism having a detached splitter plate at the wake side was investigated by measuring of fluid force on the square prism and by visualization of the field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of splitters to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. The drag reduction rate was increased with H/B, and was increased and decreased with G/B. The maximum drag reduction rate was represented by 24.2% at H/B=1.5 and G/B=0.5. The two vortices were generated by the splitter plate at the wake region of the prism. The direction of the vortex was clockwise at the upside of the splitter plate and counterclockwise at the downside.

  • PDF

The acrosswind response of the downwind prism in a twin-prism system with a staggered arrangement

  • Fang, Fuh-Min;Chung, Cheng-Yang;Li, Yi-Chao;Liu, Wen-Chin;Lei, Perng-Kwei
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.245-262
    • /
    • 2013
  • The flow interaction between two identical neighboring twin square prisms in a staggered arrangement in an open terrain was investigated experimentally. The downwind prism was mounted on a rigid-aeroelastic setup in an open-terrain boundary layer flow to measure its acrosswind root-mean-square responses and aerodynamic damping ratios. By varying the relative location of the upwind prism and the Scruton number associated with the downwind prism, the acrosswind aeroelastic behavior of the downwind prism was analyzed and compared to that of an isolated one. Results showed that the acrosswind root-mean-square response of the downwind prism could be either suppressed or enhanced by the wake flow produced by the neighboring upwind prism. Besides the assessment of the wake effect of the downwind prism, finally, regressed relationships were presented to describe the variation of the aerodynamic damping ratio so as to predict its acrosswind fluctuating response numerically.

분리판이 설치된 정사각주 주위의 유동특성에 관한 연구 (Experimental Study on the Flow around a Square Prism with a Splitter Plate)

  • 박종규;서성호;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.915-922
    • /
    • 2005
  • This experimental study is conducted to investigate effects of a splitter plate, which is set on the back side of a square prism in the uniform flow. The Reynolds number is $1.44{\times}10^{4}$ based on the width of the square prism. The measurement of velocity vector and pressure distribution are carried out 4 cases of length in the range of 0.5L to 2.0L with 0.5L interval and 3 cases of Position at 0L, 0.25L, 0.5L, Flow visualization is also executed by smoke-wire method to understand the mechanism of vortex formation The results show the strong vortex shedding patterns and drags are decreased effectively, when the position of splitter plate is 0L. And the drag reduction rate is in inverse proportion to the splitter plate length

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.

벽면에 근처에 놓인 정방형주의 수평 분리판에 의한 유동 제어 (The Flow Control by a Horizontal Splitter Plate for a Square Prism near a Wall)

  • 노기덕;이상준;이경윤;장재동;정용길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.625-631
    • /
    • 2011
  • 본 연구는 벽면근처에 놓인 정방형주의 모서리에 수평 분할판을 부착하여 유체력 제어 효과를 양항력 측정실험 및 PIV에 의한 가시화 실험으로 조사한 것이다. 분할판의 폭은 정방형주 폭의 10% 로 했다. 실험변수로서는 수평 분할판의 부착 위치 및 벽면과 사각주 사이의 간격으로 하였으며, 그 결과를 요약하면 다음과 같다. 간격비 0.4 이상에서 벽면과 정방형주 사이에 흐름이 명확했고, 후류측 칼만 와도 뚜렷이 나타났다. 원형의 정방형주는 간격비 0.4에서 수평 분할판을 가진 정방형주는 간격비 0.6에서 평균양력계수 및 Strouhal 수의 변곡점이 나타났다. 정방형주 아랫면의 뒷 모서리에 수평 분할판을 설치한 경우 항력이 감소하였으며 각 간격비 평균 4.5%의 항력 저감 효과를 얻었다. 이 경우 정방형주 윗면 박리영역의 크기는 분할판이 없는 정방형주에 비해 작았다.

Maximum vortex-induced vibrations of a square prism

  • Barrero-Gil, A.;Fernandez-Arroyo, P.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.107-121
    • /
    • 2013
  • This paper presents an experimental investigation concerning the peak amplitudes of oscillation of a square prism due to Vortex-Induced-Vibrations (VIV) as a function of the mass damping parameter $m^*{\zeta}$(the so called Griffin--plot); $m^*$ and ${\zeta}$ being, respectively, the non-dimensional mass and the mechanical (structural) damping ratio. With this purpose in mind, an electromagnetic actuator has been employed to provide controlled damping. During the experiments the mass--damping parameter was in the range 0.15 < $m^*{\zeta}$ < 2.4. Experiments show that there is a value of $m^*{\zeta}$ below which VIV appears combined with galloping and the prism oscillation increases monotonically with the incoming flow velocity. For $m^*{\zeta}$ >0.3 the present experiments show a well-defined VIV phenomenon and, consequently, a Griffin-plot can be defined.

Maximum Vortex-Induced Vibrations of a square prism

  • Barrero-Gil, A.;Fernandez-Arroyo, P.
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.341-354
    • /
    • 2013
  • This paper presents an experimental investigation concerning the peak amplitudes of oscillation of a square prism due to Vortex-Induced-Vibrations (VIV) as a function of the mass damping parameter $m^*{\zeta}$ (the so called Griffin--plot); $m^*$ and ${\zeta}$ being, respectively, the non-dimensional mass and the mechanical (structural) damping ratio. With this purpose in mind, an electromagnetic actuator has been employed to provide controlled damping. During the experiments the mass--damping parameter was in the range 0.15 < $m^*{\zeta}$ < 2.4. Experiments show that there is a value of $m^*{\zeta}$ below which VIV appears combined with galloping and the prism oscillation increases monotonically with the incoming flow velocity. For $m^*{\zeta}$ >0.3 the present experiments show a well-defined VIV phenomenon and, consequently, a Griffin-plot can be defined.