• 제목/요약/키워드: Square Cup Deep Drawing

검색결과 56건 처리시간 0.021초

사각 컵 배터리 케이스 바닥 벤트 성형을 위한 단조 금형 설계 (Forging Die Design for Vent Forming of Square Cup Battery Case)

  • 이상훈;권순호;정훈;홍석무
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.330-335
    • /
    • 2017
  • 최근 자동차 산업에서 전기 모터 연료 전지에 대한 수요가 급증했으며, 연료 전지 케이스로 사용되는 사각형 알루미늄 캔에 대한 수요 또한 증가하고 있다. 직사각형 배터리 케이스의 바닥에 있는 에어 벤트는 비정상적으로 높은 압력이 발생할 때 미리 압력을 방출하여 큰 폭발을 방지하는 역할을 한다. 직사각형 컵 배터리 케이스는 6 단계의 다단계 딥 드로잉으로 외형을 만들고 직사각형 배터리 케이스와 용접하여 벤트 부품을 제작해왔다. 그러나 본 연구에서는 직사각형 케이스의 바닥면에 공기 벤트 형상을 직접 추가 하는 연구를 수행하였다. 단조의 초기 형상으로는 사각 컵 다단식 딥 드로잉 성형 해석에서 추출한 두께와 형상을 이용한 유한 요소 해석 기법을 사용 하였다. 그 결과, 예측 정밀도가 향상되고, 배부름 및 파단 등의 결함을 미리 예측할 수 있었다. 초기 분석 결과를 토대로 두 가지 단조 형상이 후보로 제시되었고 성형 해석을 통해 최적의 단조 형상을 결정 하였다. 이러한 결과를 바탕으로 금형을 제작하고 실제 결과와 분석 결과를 비교하여 본 연구의 타당성을 검증하였다.

민감도법에 의한 최적블랭크 형상 설계에 관한 연구 (A Study on the Optimal Blank Design Using Sensitivity Analysis Method)

  • 심현보;손기찬
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.79-86
    • /
    • 2000
  • In this study, a method of optimal blank design using the sensitivity analysis has been proposed. To get sensitivity a well-known commercial code PAM-STAMP has been used. In order to verify this method, formings of square cup, clover shaped cup and L shaped cup have been chosen as the examples. With the predicted optimal blank both computer simulation and experiment are performed. Excellent agreements are recognized between the numerical results and the target contour shapes. Through the investigation, the proposed systematic method of optimal blank design is found to be effective in the design of the deep drawing process.

코너각이 용기에 성형에 미치는 영향에 관한 연구 (A Study on the Effect of corner Angle on Cup Drawing)

  • 김진무;유호영
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.14-21
    • /
    • 1999
  • Trapezoid cups and square ones have been deep-drawn to 45mm in depth. Displacements and strains have been analysed by FEM and experiment. Strains and effective strains in the corner flanges of trapezoid cups have been compared with those in square cups. The results have shown that because of shear strains on the corner flange, it is necessary to adopt effective strain for comparing strains, mean vale of effective strains in the corner flange with a corner angle of 72 degrees is narly equal to those with a corner angle of a right angle and mean value of effective strains with a corner angle of 102 degrees is smaller than those with a corner angle of a right angle.

  • PDF

실험용 수치제어 쿠션 시스템의 개발과 드로잉 성형성에 미치는 영향 (Development of Experimental Numerically Controlled Cushion System and Its Effects on Drawability)

  • 이정우;최치수;최이천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.120-123
    • /
    • 2000
  • It is well known, for many years, that deep drawability can be improved by applying variable blank holding force. To apply variable blank holding force during cup during, we set up pressure controlling system on experimental hydraulic press, and the pressure control system is often called NC(Numerically Controlled) cushion system Using the NC cushion system we compared the drawability of square steel cups with NC cushion and that with conventional cushion. The results show drawability is greatly improved when the pressure control curve is designed in a S-shaped curve. This paper includes design details of the NC cushion system and experimental analysis of drawability with experimental NC cushion system.

  • PDF

Mg 합금 온간 판재 성형시 공정 변수의 영향에 관한 연구 (An Effect on the Process Parameter of Mg Alloy at Warm Sheet Forming)

  • 이영선;권용남;김민철;최상운;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.43-47
    • /
    • 2006
  • Since the sheet metal forming of Mg alloy is performing at elevated temperature, the effect of process conditions related with the forming temperature is very important factor. Therefore, the investigation for process variables is necessary to design the tools and process conditions. In this study, the effects of process variables were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and lubricant condition were investigated. When forming temperature was $250^{\circ}C$, speed forming was low, and teflon sheet was used as lubricant, the formed parts were good without defects.

  • PDF

반응표면분석법을 이용한 알루미늄 판재 성형공정의 스프링백 저감에 관한 연구 (A Study of the Springback Reduction in Aluminium Sheet Forming Using Response Surface Method)

  • 양재봉;전병희;오수익
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.526-532
    • /
    • 2000
  • Springback simulation is receiving increasing attention throughout the automotive industry and the academic world. The knowledge of the real springback of stamped parts can help the stamping technicians to modify the process parameters or die geometry in order to reduce the shape defect. This paper presents the results of springback simulation after aluminium square cup deep drawing and trimming simulation, and results of springback optimization using response surface method.

  • PDF

유한요소법을 이용한 자동차 패널의 성형 해석 (Simulation of Stamping of an Automotive Panel using a Finite Element Method)

  • 이종길;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.76-79
    • /
    • 1997
  • In this study, an elasto-plastic finite element code, ESFORM, was developed to analyze sheet stamping processes. A formulation of 4-node degenerated shell element was implemented in the code. Workpiece materials were assumed to have planar anisotropy, and governed by associated flow rule. Explicit time integration method was employed to save computation time and reduce the required computer memory. Penalty method was used to describe interface behavior between workpiece and rigid die. Deep drawing of square cup and front finder stamping processes were simulated by ESFORM>

  • PDF

온간금형에 의한 클래드판재(STS304-A1050-STS304)의 드로잉성 연구 (A Study on the Drawability of Clad Sheet Metal (STS304-A1050-STS304) by Warm Draw Die)

  • 류호연;김종호;류제구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.136-143
    • /
    • 2002
  • Warm draw die technique which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical and square cup drawing of stainless-aluminum clad sheets. In experiments the temperature of die and blank holder is varied from room temperature to $180^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch comer area. Test materials chosen for experiments are STS304-A1050-STS304 clad sheets. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio and relative drawing depth as well as quality of drawn cups(distribution of thickness)are investigated and validity of warm drawing process is also discussed. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant remover and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

평면이방성을 고려한 알루미늄 판재의 유한요소해석 (FE analysis of Al sheet metal considering planar anisotropy)

  • 윤정환;양동열;송인섭;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.44-54
    • /
    • 1994
  • A variational formulation and the associated finite elemet equations have been derived for general three-dimensional deformation of a planar anisotropic rigid-plastic sheet metal which obeys the strain-rate potential proposed by BARLAT et al [13]. By using the natural convected coordinate system, the effect of geometric change and the rotation of planar anisotropic axes are considered efficiently. In order to check the validity of present formulation, a cylindrical cup and a square cup deep drawing test was modeled. good agreement was found between the FE simulation and the experiment. The results have shown that the present formulation for planar anisotropic deformation can be efficiently applied to the analysis of sheet metal working processes for planar anisotropic nonferrous metals.

  • PDF