• Title/Summary/Keyword: Sputterings

Search Result 4, Processing Time 0.015 seconds

A Study on Mass Flow Control and FEA of Plate Spring Attached in Piezoelectric Ceramic (세라믹 압전체에 부착된 판 스프링의 유한요소해석과 질량 흐름 제어에 관한 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.61-66
    • /
    • 2003
  • In this paper, the relation between displacement of piezoelectric material and electric field was proposed. FEA was introduced to predict the displacement and reaction force of plate spring attached in the piezoelectric material. The relation between displacement of piezoelectric material forced by plate spring and applied electric field were further verified by experimental investigation. Also, the flow rate of gas in piezoelectric valve was examined by experiment. Finally, the relation between electric field and gas flow was derived. Based on these results, these relations can be used in the design of mass flow controller.

  • PDF

A Study on the Measurement of Magneto-Plasma Parameters by Probe Method (자화 플라즈마 파라메타 측정에 관한 연구)

  • Sung, Y.M.;Lee, C.Y.;Son, J.B.;Shin, J.H.;Kwak, Y.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.591-593
    • /
    • 1993
  • Magneto plasma has been widely used for controlled fusion and material processings such as etchings, depositions, and sputterings in the various fields. For controlling and guaranting the equipment, precision plasma parameters must be gained. In this experiment, using single probe and double probes, we investigated the effect of magnetic field on magneto plasma. As a result of this experiment, we found the fact that single probe was largely affected by magnetic field for measuring magneto plasma parameters, while double probe was not.

  • PDF

Studies on the Development of TiAIN/CrN Multi-layered Thin Films by Unbalanced Magnetron Sputtering Process (비대칭 스퍼터링에 의한 TiAIN/CrN 나노 다층 박막의 합성 및 특성 분석에 관한 연구)

  • Kim, Gwang-Seok;Kim, Bom-Sok;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.207-211
    • /
    • 2005
  • In this work a multi-layered nanostructured TiAIN/CrN superlattice coatings was synthesized using closed-field unbalanced magnetron sputtering method and the relationships between their superlattice period (1), micro-structure, hardness and elastic modulus were investigated. In addition, wear test at $500^{\circ}C$ and oxidation resistance test at $900^{\circ}C$ were performed to investigate high temperature properties of these thin films. The coatings were characterized in terms of microstructure and mechanical properties by transmission electron microscopy (TEM) and nano-indentation test. Results from TEM analysis showed that superlattice periods was inversely proportional to the jig rotation speed. The maximum hardness and elastic modulus of 37 GPa and 375 GPa were observed at superalttice period of 6.1 nm and 4.4 nm, respectively. An higher value of microhardness from TiAIN/CrN thin films than either TiAIN (30 GPa) or CrN (26 GPa) was noted while the elastic modulus was approximately an average of TiAIN and CrN films. These enhancement effects in superlattice films could be attributed to the resistance to dislocation glide across interface between the CrN and TiAIN layers. Much improved plastic deformation resistance ($H^3/E^2$) of 0.36 from TiAIN/CrN coatings was observed, compared with 0.15 and 0.16 from TiAIN and CrN, respectively. Also the wear resistance at $500^{\circ}C$ was largely increased than those of single TiAIN and CrN coatings and TiAIN/CrN coatings showed much reduced weight gain after exposure at $900^{\circ}C$ for 20 hours.