• Title/Summary/Keyword: Sputtering simulation

Search Result 79, Processing Time 0.029 seconds

Optical Analysis of the ITO/Ag/ITO Multiple Layers as a Highly Conductive Transparent Electrode (고전도성 투명전극인 ITO/Ag/ITO 다층박막에 관한 광학적 분석)

  • Yoon, Yeo Tak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • As a highly conductive and transparent electrode, ITO/Ag/ITO multilayers are fabricated using an in-line sputtering method. Optimal thickness conditions have been investigated in terms of the optical transmittance and the electrical conductance. Considering the optical properties, in this study, the experimental characteristics are analyzed based on theoretical phenomena, and they are compared with the simulated results. The simulations are based on the finite-difference-time-domain (FDTD) method in solving linear Maxwell equations. Consequently, the results showed that ITO/Ag/ITO multilayer structures with respective thicknesses of 39.2 nm/10.7 nm/39.2 nm are most suitable with an average transmittance of about 87% calculated for wavelengths ranging from 400-800 nm and a sheet resistance of about $7.1{\Omega}/{\square}$.

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

The Optical Properties of $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ Multi-layered Pearl-pigment films by DC, RF Magnetron Sputtering (DC, RF Magnetron Sputtering 공법을 이용한 다층 $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ 진주안료용 필름의 광학적 특성)

  • Lee, Nam-Il;Jang, Gun-Eik;Jeong, Jae-Il;Cho, Seong-Yoon;Jang, Gil-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.448-449
    • /
    • 2006
  • For the possible applicative pearl pigment, multi-layered $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ thin film was deposited on glass substrate by using sputtering method. $TiO_2$ and Al or Cr was selected as a possible high and low refraction materials at the film interface respectively. Optical properties including color effect were systematically studied in terms of different film thickness and film layers by using spectrometer. In order to expect the experimental results, the simulation program, the Essential Macleod Program(EMP) was adopted and compared with the experimental data. The film consisting of $TiO_2/Al/TiO_2$, $TiO_2/Cr/TiO_2$ layers show the wavelength range of 430 - 760nm, typically color ranges between bluish purple and red. It was confirmed that this experimental result was quite well matched with the experimental one.

  • PDF

Ion Beam Induced Micro/Nano Fabrication: Modeling (이온빔을 이용한 마이크로/나노 가공: 모델링)

  • Kim, Heung-Bae;Hobler, Gerhard
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.108-115
    • /
    • 2007
  • 3D nano-scale manufacturing is an important aspect of advanced manufacturing technology. A key element in ability to view, fabricate, and in some cases operate micro-devices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. The use of ions is the only way to fabricate directly micro-/ nano-scale structures. It has been utilized as a direct-write method for lithography, implantation, and milling of functional devices. The simulation of ion beam induced physical and chemical phenomena based on sound mathematical models associated with simulation methods is presented for 3D micro-/nanofabrication. The results obtained from experimental investigation and characteristics of ion beam induced direct fabrication will be discussed.

Three-dimensional Self-consistent Particle-in-cell and Monte Carlo Collisional Simulation of DC Magnetron Discharges

  • Kim, Seong-Bong;Chang, Hyon-U;Yoo, Suk-Jae;Oh, Ji-Young;Park, Jang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.526-526
    • /
    • 2012
  • DC magnetron discharges were studied using three-dimensional self-consistent particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. Two rectangular sputter sources (120 mm * 250 mm and 380 mm * 200 mm target sizes) were used in the simulation modeling. The number of incident ions to the Cu target as a function of position and simulation time was obtained. The target erosion profile was calculated by using the incident ions and the sputtering yields of the Cu target calculated with SRIM codes. The maximum ion density of the ion density distribution in the discharge was about $10^{10}cm^{-3}$ due to the calculation speed limit. The result may be less than one or two order of magnitude smaller than the real maximum ion density. However, the target erosion profiles of the two sputter sources were in good agreement with the measured target erosion profiles except for the erosion profile near the target surface, in which which the measured erosion width was broader than the simulation erosion width.

  • PDF

Development of New Etching Algorithm for Ultra Large Scale Integrated Circuit and Application of ICP(Inductive Coupled Plasma) Etcher (초미세 공정에 적합한 ICP(Inductive Coupled Plasma) 식각 알고리즘 개발 및 3차원 식각 모의실험기 개발)

  • 이영직;박수현;손명식;강정원;권오근;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.942-945
    • /
    • 1999
  • In this work, we proposed Proper etching algorithm for ultra-large scale integrated circuit device and simulated etching process using the proposed algorithm in the case of ICP (inductive coupled plasma) 〔1〕source. Until now, many algorithms for etching process simulation have been proposed such as Cell remove algorithm, String algorithm and Ray algorithm. These algorithms have several drawbacks due to analytic function; these algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between Projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously In order to apply ULSI process simulation, algorithm considering above mentioned interactions at the same time is needed. Proposed algorithm calculates interactions both in plasma source region and in target material region, and uses BCA (binary collision approximation4〕method when ion impact on target material surface. Proposed algorithm considers the interaction between source ions in sheath region (from Quartz region to substrate region). After the collision between target and ion, reflected ion collides next projectile ion or sputtered atoms. In ICP etching, because the main mechanism is sputtering, both SiO$_2$ and Si can be etched. Therefore, to obtain etching profiles, mask thickness and mask composition must be considered. Since we consider both SiO$_2$ etching and Si etching, it is possible to predict the thickness of SiO$_2$ for etching of ULSI.

  • PDF

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment (비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

A Study on Design of Magnetic Thin Film Inductors for DC-DC Converter Applications (DC-DC Converter용 자성박막 인덕터 설계에 관한 연구)

  • 윤의중;김좌연;박노경;김상기;김종대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The Ni$\sub$81/Fe$\sub$19/ (at%) alloy was selected as a high-frequency($\geq$MHz) magnetic thin film magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of dolenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoftt HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance (Q$\geq$60, L = 1${\mu}$H, efficiency $\geq$90%), high-frequency ($\geq$5MHz), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

Electronic and Optical Properties of MgO Films Due to Ion Sputtering

  • Lee, Sang-Su;;Lee, Gang-Il;Lee, Seon-Yeong;Chae, Hong-Cheol;Gang, Hui-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.188-188
    • /
    • 2011
  • MgO는 암염구조의 이온결합성 화합물로 7.8 eV의 높은 띠 틈과 약 95%의 탁월한 투과도를 갖는다. 또한, ${\gamma}$ process에 의한 이차 전자 방출이 높고 이온 스퍼터링에 의한 표면 손상이 적어 면 방전 AC-PDP의 보호막으로 이용된다. 따라서 MgO 보호막에 관한 연구는 이차 전자 방출 계수를 높여 방전 전압을 감소시키고 높은 유전율과 투과도를 유지시키기 위한 목적으로 전개되어지고 있다. 본 연구는 이온 스퍼터링에 의한 MgO 보호막의 표면 특성의 변화를 알아보기 위해 이루어졌다. MgO 박막은 electron beam evaporation의 방법을 통해 챔버 내에 O 기체를 주입하고 P type Si 기판을 300$^{\circ}C$ 가열하여 40 nm 두께로 제작되었다. 박막 시료는 표면분석 전 초고진공챔버 내에서 표면에 산화된 불순물 제거를 위해 550$^{\circ}C$의 열처리가 되어졌다. 그리고 250 eV의 He 이온으로 박막 표면을 스퍼터링 하여 XPS, REELS, UPS를 이용하여 전자 및 광학적 특성을 연구하였다. XPS 분석을 통해 MgO 박막은 He 이온 스퍼터링에 의해 표면의 화학적 조성이 변하지 않는다는 것을 확인했다. MgO 박막에 이온 스퍼터링을 하면 표준 시료와 비교하여 Ep=1,500 eV일 때 7.54 eV에서 7.63 eV로 높아지는 경향이 있다. 일함수는 He 이온 스퍼터링 한 결과 3.85 eV로부터 4.09 eV로 약간 높아졌다. 또한, QUEELS simulation으로 얻은 가시광 투과도는 91~92%로 분석되었다.

  • PDF

The Optical Properties of Si3N4/SnZnO/AZO/Ag/Ti/ITO Multi-layer Thin Films with Laminating Times (Si3N4/SnZnO/AZO/Ag/Ti/ITO 다층 박막의 적층 횟수에 따른 광학적 특성)

  • Lee, Sang-Yun;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In this study, $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film were prepared on glass substrate by DC/RF magnetron sputtering method. To prevent interfacial reaction between Ag and ITO layer, Ti buffer layer was inserted. Optical properties and sheet resistance were studied depending on laminating times of each multi-layered film especially in visible ray. The simulation program, EMP (essential macleod program), was adopted and compared with experimental data to expect the experimental result. It was found out that the transmittance of the first stacked $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film was more than 90%. However, with increasing stacking times, the optical properties of $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film get worse. Consequently, Ti layer is good for oxidation barrier, but too many uses of this layer may have an adverse effect to optical properties of TCO film.