• 제목/요약/키워드: Sputtering method

검색결과 1,356건 처리시간 0.031초

RF 스퍼터링법에 의한 (SrCa)Ti $O_3$ 세라믹 박막의 제초 및 미세구조 (Fabrication and microstructure of (Sr .Ca)Ti $O_3$ Ceramic Thin Films by RF Sputtering Method-)

  • 김진사;정일형;백봉현;김충혁;최운식;오재한;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.189-193
    • /
    • 1997
  • (S $r_{0.85}$/C $a_{0.15}$)Ti $O_3$(SCT) thin films at various deposition temperature and rf power were grown by rf magnetron sputtering method on optimized Pt-based electrodes (Pt/TiN/ $SiO_2$/Si). The crystallinity of the films increases with increasing deposition temperature. SCT thin film is depend on the surface morphology and crystallinity of Pt films for bottom electrode. Dielectric constant of (S $r_{0.85}$C $a_{0.15}$)Ti $O_3$ thin films deposited on Si wafer substrate are larger with the increase of deposition temperature and gain size.in size.

  • PDF

RF 마그네트론 스퍼터링법을 이용한 MgO 박막의 특성에 관한 연구 (A Study on the Characteristics of MgO Thin Film Prepared by RF Magnetron Sputtering Method)

  • 정연우;윤차근;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.206-208
    • /
    • 1996
  • Thin films of magnesium oxide(MgO) were deposited on glass substrates by RF magnetron sputtering method. The characteristics of MgO thin films were analyzed as a function of various deposition conditions such as substrate temperature, substrate self-bias, input power and pressure. As the substrate temperature and bias voltage were increased, the grain size of MgO thin film increased. XRD peaks of (111) and (222) direction became dominant, as the substrate bias voltage increases and temperature decreases.

  • PDF

SBT 커패시터의 열처리 조건에 따른 강유전 특성 (Ferroelectric Properties of SBT Capacitors with Annealing Conditions)

  • 이성일
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.72-76
    • /
    • 2004
  • The $Sr_{0.7}Bi_{2.6}Ta_2O_9$(SBT)thin films are deposited on pt-coated electrode(Pt/$TiO_2/SiO_2/Si$) using a RF magnetron sputtering method. The electrical properties of SBT capacitors with annealing conditions were studied. In the XRD pattern, the SBT thin films in all annealing temperatures had (105) orientation. In the SEM images, Bi-layered perovskite phase was crystallized at $750^{\circ}C$,/TEX> and grains largely grew in oxygen annealing atmosphere. The maximum renanent polarization and the coercive electric field with annealing conditions are 12.40C/$cm^2$ and 30kV/cm, respectively. The dielectric constant and leakage current density with Pt electrode is 340 and 2.13${\times}10^{-10}A/cm^2$, respectively.

Aging Properties of SBT Thin Films Prepared by RF Magnetron Sputtering Method

  • Cho, C.N.;Kim, J.S.;Oh, Y.C.;Shin, C.G.;Choi, W.S.;Kim, C.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.474-475
    • /
    • 2007
  • The $Sr_{0.8}Bi_{2.2}Ta_2O_9$(SBT) thin films are deposited on Pt-coated electrode(Pt/$TiO_2/SiO_2$/Si) using RF magnetron sputtering method. The aging properties of SBT capacitor with top electrodes represents a favorable properties in Pt electrode. The dielectric constant and leakage current density with Pt electrode is 340 and $6.81{\times}10^{-10}\;A/cm^2$ respectively. The maximum remanent polarization and the coercive electric field with Pt electrode are $12.40{\mu}C/cm^2$ and 30kV/cm respectively.

  • PDF

낮은 저항온도계수를 갖는 박막 저항체 제작 및 신뢰성 특성 평가 (Fabrication and Reliability Properties of Thin film Resistors with Low Temperature Coefficient of Resistance)

  • 이붕주
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.352-356
    • /
    • 2007
  • The Ni/Cr/Al/Cu (51/41/4/4 wt%) thin films were deposited by using DC magnetron sputtering method for the application of the resistors having low TCR (temperature coefficients of resistance) and high resistivity from the former printed-results[3]. The TCR values measured on the as-deposited thin film resistors were less than ${\pm}10\;ppm/^{\circ}C$ and $-6{\sim}+1\;ppm/^{\circ}C$ after annealing and packaging process. The TCR values were $-3{\sim}1\;ppm/^{\circ}C$ (ratio of variation : about 0.02 %) and $-30{\sim}20\;ppm/^{\circ}C$ (ratio of variation : about $0.5{\sim}1\;%$) for the thermal cycling and PCT (pressure cooker test), respectively. It was confirmed that the reliability properties of the thin film resistor were good for electronic components.

비정질 산화물 SiZnSnO 반도체 박막의 전기적 특성 분석 (Investigation on Electrical Property of Amorphous Oxide SiZnSnO Semiconducting Thin Films)

  • 변재민;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제32권4호
    • /
    • pp.272-275
    • /
    • 2019
  • We investigated the electrical characteristics of amorphous silicon-zinc-tin-oxide (a-SZTO) thin films deposited by RF-magnetron sputtering at room temperature depending on the deposition time. We fabricated a thin film transistor (TFT) with a bottom gate structure and various channel thicknesses. With increasing channel thickness, the threshold voltage shifted negatively from -0.44 V to -2.18 V, the on current ($I_{on}$) and field effect mobility (${\mu}_{FE}$) increased because of increasing carrier concentration. The a-SZTO film was fabricated and analyzed in terms of the contact resistance and channel resistance. In this study, the transmission line method (TLM) was adopted and investigated. With increasing channel thickness, the contact resistance and sheet resistance both decreased.

고전도성 투명전극인 ITO/Ag/ITO 다층박막에 관한 광학적 분석 (Optical Analysis of the ITO/Ag/ITO Multiple Layers as a Highly Conductive Transparent Electrode)

  • 윤여탁;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.87-91
    • /
    • 2019
  • As a highly conductive and transparent electrode, ITO/Ag/ITO multilayers are fabricated using an in-line sputtering method. Optimal thickness conditions have been investigated in terms of the optical transmittance and the electrical conductance. Considering the optical properties, in this study, the experimental characteristics are analyzed based on theoretical phenomena, and they are compared with the simulated results. The simulations are based on the finite-difference-time-domain (FDTD) method in solving linear Maxwell equations. Consequently, the results showed that ITO/Ag/ITO multilayer structures with respective thicknesses of 39.2 nm/10.7 nm/39.2 nm are most suitable with an average transmittance of about 87% calculated for wavelengths ranging from 400-800 nm and a sheet resistance of about $7.1{\Omega}/{\square}$.