• 제목/요약/키워드: Sputtering method

검색결과 1,356건 처리시간 0.033초

Effect of Negative Oxygen Ions Accelerated by Self-bias on Amorphous InGaZnO Thin Film Transistors

  • 김두현;윤수복;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.466-468
    • /
    • 2012
  • Amorphous InGaZnO (${\alpha}$-IGZO) thin-film transistors (TFTs) are are very promising due to their potential use in thin film electronics and display drivers [1]. However, the stability of AOS-TFTs under the various stresses has been issued for the practical AOSs applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the ${\alpha}$-IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of ${\alpha}$-IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of ${\alpha}$-IGZO thin film. In this paper, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in ${\alpha}$-IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of ${\alpha}$-IGZO TFTs by this new deposition method.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

RF/DC 동시인가 마그네트론 스퍼터링 방법으로 증착된 ITO 박막의 열처리 특성 연구 (A Study on the Annealed Properties of ITO Thin Film Deposited by RF-superimposed DC Reactive Magnetron Sputtering)

  • 문진욱;김동원
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.117-124
    • /
    • 2007
  • The ITO films were deposited on glass substrates by RF-superimposed dc reactive magnetron sputtering and were annealed in $N_2$ vacuum furnace with temperatures in the range of $403K{\sim}573K$ for 30 minutes. Electrical, optical and structural properties of ITO films were examined with varying annealing temperatures from 403 K to 573 K. The resistivity of as-deposited ITO films was $5.4{\times}10^{-4}{\Omega}cm$ at the sputter conditions of applied RF/DC power of 200/200 W, $O_{2}$ flow of 0.2 seem and Ar flow of 0.2 seem. As a result of annealing in the temperature range of $403K{\sim}573K$, the crystallization occurred at 423 K that is lower than the crystallization temperature caused by a conventional sputtering method. And the resistivity decreased from $5.4{\times}10^{-4}{\Omega}cm\;to\;2.3{\times}10^{-4}{\Omega}cm$, the carrier concentration and mobility of ITO films increased from $4.9{\times}10^{20}/cm^3\;to\;6.4{\times}10^{20}/cm^3$, from $20.4cm^2/Vsec\;to\;41.0cm^2/Vsec$, respectively. The transmittance of ITO films in visible became higher than 90% when annealed in the temperature range of $423K{\sim}573K$. High quality ITO thin films made by RF-superimposed dc reactive magnetron sputtering and annealing in $N_2$ vacuum furnace will be applied to transparent conductive oxides of the advanced flat panel display.

Undoped ZnO 박막에 Ampoule-tube 방법을 이용한 P와 As의 확산과 p형 ZnO 박막의 전기적 특성 (Phosphorus and Arsenic Diffusion used by Ampoule-tube Method into Undoped ZnO Thin Films and the Electrical Properties of p-type ZnO Thin Films)

  • 소순진;왕민성;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제18권11호
    • /
    • pp.1043-1047
    • /
    • 2005
  • To investigate the electrical properties of the ZnO films which are interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $2.1\;{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into the undoped ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3 hr. We found the diffusion condition of the conductive ZnO films which had n- and p-type properties. Our ZnO thin film has not only very high carrier concentration of above $10^{17}/cm^3$ but also low resistivity of below $2.0\times10^{-2}\;{\Omega}cm$.

저온동시소성세라믹 기판 위에 제작된 PZT 박막의 증착조건이 박막의 구조적 특성에 미치는 영향 (Effects of Sputtering Condition on Structural Properties of PZT Thin Films on LTCC Substrate by RF Magnetron Sputtering)

  • 이경천;황현석;이태용;허원영;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.297-302
    • /
    • 2011
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of sputtering gas ratio and annealing temperature on the crystal structure of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrate with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Pt / Ti / LTCC substrates by RF magnetron sputtering method. The results showed that the crystallization of the films were enhanced as increasing $O_2$ mixing ratio. At about 25% $O_2$ mixing ratio, was well crystallized in the perovskite structure. PZT thin films was annealed at various temperatures. When the annealing temperature is lower, the PZT thin films become a phyrochlore phase. However, when the annealing temperature is higher than $600^{\circ}C$, the PZT thin films become a perovskite phase. At the annealing temperature of $700^{\circ}C$, perovskite PZT thin films with good quality structure was obtained.

R.F. Magnetron Sputtering을 이용한 리튬이차전지 부극용 Sn1-xSixO2의 제조 및 특성 (Fabrication and Characterization of Sn1-xSixO2 Anode for Lithium Secondary Battery by R.F. Magnetron Sputtering Method)

  • 이상헌;박건태;손영국
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.394-400
    • /
    • 2002
  • 리튬 이차전지용 부극재료로 미량의 실리콘이 첨가된 주석산화물 박막을 R.F. magnetron sputtering법을 이용하여 제조하였다. 실리콘의 첨가로 인해 주석의 산화상태를 감소시켜서 첫 번째 충방전 동안 비가역성을 감소시키는 전기 화학적 결과를 얻을 수 있었다. 주석 산화물 박막의 결정 배향성은 기판온도가 올라감에 따라서 (110),(101),(211) 면들이 성장하였다. 합성된 박막은 기판온도가 $300^{\circ}C$이고 $Ar:O_2$의 비가 7:3일때, 700mAh/g의 에너지 밀도를 가지며 가장 좋은 가역성능을 보여주었다.

Deposition of ZrO$_2$ and TiO$_2$ Thin Films Using RF Magnet ron Sputtering Method and Study on Their Structural Characteristics

  • Shin, Y.S.;Jeong, S.H.;Heo, C.H.;Bae, I.S.;Kwak, H.T.;Lee, S.B.;Boo, J.H.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.14-21
    • /
    • 2003
  • Thin films of ZrO$_2$ and TiO$_2$ were deposited on Si(100) substrates using RF magnetron sputtering technique. To study an influence of the sputtering parameters, systematic experiments were carried out in this work. XRD data show that the $ZrO_2$ films were mainly grown in the [111] orientation at the annealing temperature between 800 and $1000^{\circ}C$ while the crystal growth direction was changed to be [012] at above $1000^{\circ}C$. FT-IR spectra show that the oxygen stretching peaks become strong due to $SiO_2$ layer formation between film layers and silicon surface after annealing, and proved that a diffusion caused by either oxygen atoms of $ZrO_2$ layers or air into the interface during annealing. Different crystal growth directions were observed with the various deposition parameters such as annealing temperature, RF power magnitude, and added $O_2$ amounts. The growth rate of $TiO_2$ thin films was increased with RF power magnitude up to 150 watt, and was then decreased due to a sputtering effect. The maximum growth rate observed at 150 watt was 1500 nm/hr. Highly oriented, crack-free, stoichiometric polycrystalline $TiO_2$<110> thin film with Rutile phase was obtained after annealing at $1000^{\circ}C$ for 1 hour.

Co-sputtering법으로 제작한 ZnTe 태양전지의 특성 (Characteristics of the ZnTe solar cell by the co-sputtering methods)

  • 장유진;김성우;최혁환;이명교;권태하
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.440-448
    • /
    • 2004
  • 본 논문에서는 II-Vl족의 ZnTe 화합물반도체 태양전지를 제작하기 위하여 투명전극(AZO) 및 Buffer layer(ZnO)의 특성과 태양전지의 효율에 가장 큰 영향을 미치는 광흡수층의 에너지밴드갭을 줄이는 연구를 하였다. ZnTe박막은 Zn(Zinc)과 Te(Tellurium)를 co-sputtering법을 이용하여 증착하였다. ZnTe 박막은 Zn과 Te의 RF power를 각각 50W, 30W로 하여 10mTorr의 Ae 분위기에서 20$0^{\circ}C$의 기판온도로 제작되었으며, 이때의 에너지밴드갭은 1.73eV였다. 이렇게 제작된 박막을 진공상태에서 $400^{\circ}C$의 온도로 10초간 열처리하여 1.67eV의 에너지밴드갭을 얻을 수 있었고, 이때의 Zn과 Te의 비율은 32%:68%였다. 최적의 조건에서 태양전지는 6.85% (Voc:0.69V, Jsc:21.408㎃/$cm^2$, Fill Factor (FF):0.46)의 효율을 얻을 수 있었다.

Ampoule-tube 법을 이용한 P와 As 도핑 p형 ZnO 박막의 미세구조와 Hall 특성 (Microstructures and Hall Properties of p-type Zno Thin Films with Ampouele-tube Method of P and As)

  • 소순진;임근영;유인성;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.141-142
    • /
    • 2005
  • To investigate the ZnO thin films which is interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $1.9{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3hr. We find the condition of p-type ZnO whose diffusion condition is $700^{\circ}C$, 3hr. Our p-type ZnO thin film has not only very high carrier concentration of above $10^{19}/cm^3$ but also low resistivity of $5\times10^{-3}{\Omega}cm$.

  • PDF

R.F. 스퍼터링법에 의한 상변화형 광디스크의 $(ZnS)_{1-x}-(SiO_2)_x$ 보호막 제조시 기판 바이어스전압의 영향 (The Effects of Substrate Bias Voltage on the Formation of $(ZnS)_{1-x}-(SiO_2)_x$ Protective Films in Phase Change Optical Disk by R.F. Sputtering Method.)

  • 이태윤;김도훈
    • 한국재료학회지
    • /
    • 제8권10호
    • /
    • pp.961-968
    • /
    • 1998
  • 상변화형 광디스크의 보호막으로 사용되는 $ZnS-SiO_2$ 유전체막을 RF magnetron 스퍼트링방법에 의하여 제조하는 경우에 기판 바이어스전압의 영향을 조사하기 위하여, 알곤가스 분위기에서 ZnS(80mol%)-$SiO_2$(20mol%)타겟을 사용하여 Si Wafer와 Corning flass 위에 박막을 증착시켰다. 본 실험에서는 여러 실험 변수를 효과적으로 조절하면서 실험의 양을 줄이고 도시의 산포를 동시에 만족시키는 최적조건으로 타겟 RF 출력 200W, 기판 RF 출력 20W, 아르곤 압력 5mTorr과 증착시간 20분을 얻을 수 있었으며, 신뢰구간 95%에서 확인실험을 수행하였다. 증착된 박막의 열적 저항성을 측정하기 위해 $300^{\circ}C$$600^{\circ}C$에서 열처리시험을 수행하였고, Spectroscopic Ellipsometry 측정을 통한 광학적 데이터를 바탕으로 Bruggeman EMA(Effective Medium Approximation)방법을 이용하여 기공(void)분률을 측정하였다. 본 연구결과에 의하면 특성치 굴절률에 대하여 기판 바이어스인자와 증착시간 사이에는 서로 교호작용이 강하게 존재함을 확인할 수 있었다. TEM분석과 XRD 분석 결과에 의하면 기판 바이어스를 가한 최적조건에서 증착된 미세조직은 기존의 바이어스를 가하지 않을 조건에서 증착시킨 박막보다 미세한 구조를 가지며, 또한 과도한 바이어스전압은 결정구조의 조대화를 야기시켰다. 그리고 적절한 바이어스전압은 박막의 밀도를 증가시키며, 기공분률을 약 3.7%정도 감소시킴을 확인할 수 있었다.

  • PDF