• Title/Summary/Keyword: Sputtering System

Search Result 939, Processing Time 0.027 seconds

Structural and Optical Properties of TiO2 Thin Films Prepared by RF Reactive Magnetron Sputtering (RF reactive magnetron sputtering으로 제조한 TiO2 박막의 구조 및 광학적 특성)

  • Gang, Gye-Won;Lee, Yeong-Hun;Gwak, Jae-Cheon;Lee, Dong-Gu;Jeong, Bong-Gyo;Park, Seong-Ho;Choe, Byeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.452-457
    • /
    • 2002
  • Titanium oxide films were prepared by RF reactive magnetron sputtering. The effect of sputtering conditions on structural and optical properties was investigated systemically as a function of sputtering pressure(5~20 mTorr) and $O_2/Ar$ flow ratio(0.08~0.4). The results of the X-ray diffraction showed that all films had only the anatase $TiO_2$ phase. At low sputtering pressure and $O_2/Ar$ flow ratio, the films had preferred orientations along [101] and [200] directions. As the sputtering pressure and $O_2/Ar$ flow ratio increased, the intensity of the 101 and 200 diffraction peaks decreased gradually. The microstructure of the sputtered films showed the fine grain size (20nm~50nm) and columnar microcrystals perpendicular to the substrate. With increasing the sputtering pressure and decreasing $O_2/Ar$ flow ratio, the sputtered films showed the more porous columnar structure. XPS analysis showed that stoichiometric $TiO_2$ films were deposited at 7 mTorr sputtering pressure and 0.2 $O_2/Ar$ flow ratio. The results of the X-ray diffraction showed that all films had only the anatase $TiO_2$ phase. Ellipsometeric analysis showed that the refractive index increased from 2.32 to 2.46 as the sputtering pressure decreased. The packing density calculated using the refractive index varied from 0.923 to 0.976, indicating that $TiO_2$films became denser as the sputtering pressure decreased.

Design and Preparation of Cathode for Large Sputtering Thin Film (대면적 스퍼터링 박막 제작을 위한 캐소드 설계 및 제작)

  • Kim, Yujin;Kim, Sangmo;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.53-57
    • /
    • 2019
  • In this study, we prepared sputtering cathode for large sputtering thin film in the facing targets sputtering(FTS) system. Before fabrication of cathode equipment, we investigated optimal magnetic flux in the sputtering cathode by using magnetic field stimulation(Comsol). According to the result of magnetic field stimulation, we manufactured the cathode. After we mounted laboratory-designed cathode on FTS system, the discharge properties were observed in vacuum condition. In addition, ITO films were deposited on glass substrate and their electrical and optical properties were investigated by various measurements (four-point probe, UV-VIS spectrometer, field emission scanning electron microscopy(FE-SEM), Hall-effect measurement).

A Study on the Sputtering System Using Ion Plating Technique (이온 플레이팅 응용 스퍼터링 장치에 관한 연구)

  • Jeong, Yeon-Ho;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2179-2183
    • /
    • 2007
  • In this paper, to produce sheet plasma with high density for ion plating, we designed magnetic circuit of ion plating device consisting of solenoid coil and rectangular permanent magnet. And, we analyzed the effects of the magnetic field distribution using FEM (Finite Element Methode). Additionally, we made a sputtering system including ion plating technique on the basis of the design and verified the possibility of the sheet plasma application for advanced sputter system.

Box Cathode Sputtering Technologies for Organic-based Optoelectronics (유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술)

  • Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with Al cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that OLED with Al cathode layer prepared by BCS has much lower leakage current density ($1{\times}10^{-5}\;mA/cm^2$ at -6 V) than that $(1{\times}10^{-2}{\sim}-10^0\;mA/cm^2)$ of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and DC/RF sputtering in fabrication process of organic based optoelectronics.

Investigation of growth of ZnO thin films via RE sputtering system and in-situ post annealing

  • Jin, Hu-Jie;Lim, Keun-Young;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.61-62
    • /
    • 2005
  • The present article deals with in situ post annealing of ZnO in sputtering system. The ZnO thin films were grown at low temperature of $100^{\circ}C$ and at working pressure of 15 mTorr with RF magnetron sputtering. Having been gown, ZnO thin films were annealed in situ at different temperatures, at annealing ambient pressure of 15 mTorr and in ambients of oxygen and argon respectively. Through analyses of XRDs, it is can be concluded that the crystallinity of annealed ZnO thin films becomes much better than that of as-grown ZnO thin film.

  • PDF

Cooling Performance Analysis of Water-Cooled Large Area Magnetron Sputtering System (대면적 마그네트론 스퍼터링 증착장비의 수냉시스템 방열성능 해석)

  • Kim, Kyoung-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • In a large area magnetron sputtering system, which is under the influence of high heat load from the plasma, it is necessary to use the effective water cooling in order to maintain the proper deposition performance and the economic use of target materials. A series of three-dimensional numerical simulations are carried out on the simplified model of the large area magnetron sputtering system with the cooling plate that includes the U-shaped water channel. The analysis is focused on the effects of water channel geometry, cooling water flowrate, thermal conductivity of target material, and the degree of target erosion on the cooling performance of cooling plate, which is represented by the temperature distribution of target material.

Study on target erosion in rocking magnet sputtering system

  • Lee, Do-Sun;Kwon, Ui-Hui;Lee, Won-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.245-251
    • /
    • 2005
  • A high performance dual rocking magnet sputtering gun has been developed. The rocking magnet sputtering gun introduces full-face erosion by rapidly rocking the magnet in the region where the high plasma density is maintained. The newly developed dual rocking magnet sputtering gun whose target utilization was 77 percent achieved high performance in quality in the view of target utilization and target life-time comparing to the existing magnetron sputtering gun. The PIC-MCC target erosion simulation has been performed simultaneously. Comparing experimental target erosion profiles with simulated target erosion profiles, the simulation could estimate the tendency of the target erosion profiles but could not estimate an exact target erosion profile. If the simulation were improved more precisely, the cost reduction for the development of the multiple rocking magnet sputtering gun would be expected.