• Title/Summary/Keyword: Sputtered film

Search Result 413, Processing Time 0.016 seconds

Magnetic Properties of RF Diode Sputtered FeN Multilayer Films (RF Diode 스퍼터 방법으로 증착된 FeN 다층 박막의 자기적 특성)

  • 최연봉;박세익;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.42-47
    • /
    • 1995
  • FeN thin films for inductive recording heads were sputter deposited using RF diode sputtering mehtod from a pure iron target onto 7059 glass substrates, and their magnetic properties were measured. The magnetic properties were greatly affected by film thickness, gas pressure, sputter power and flow ratio of $N_{2}$ to Ar. Single layer FeN films with their thickness varied from $1,000\;{\AA}$ to $6,000\;{\AA}$ were doposited. 800 W sputter power, 3 mT gas pressure, $N_{2}$ to Ar flow ratio of 6.6 : 100 were the sputtering conditions. Up to 7 layers of FeN films having total thickness of $6,000\;{\AA}$ were deposited using $SiO_{2}$ of $30\;{\AA}$ thickness as intermediate layers and their coercivity and saturation magnetization were measured. The sputtering conditions were the same as those in the single layer films. Easy axis coercivity of the single layer FeN films gradually decreased as their thickness was increased, but for the films with their thicknesses above $3,000\;{\AA}$, the coercivity changed very little. As the number of the FeN layers were increased, the coercivity decreased We estimated the grain size of FeN films from the FWHM (Full Width at Half Maximum) of X-ray diffraction peaks. The grain size steadily decreased from about $200\;{\AA}$ to $120\;{\AA}$ as the number of layers were increased. Minimum hard axis coercivity of 0.4 Oe was obtained when the number of layers was four. Maximum relative permeability was 2,900 when the number of layers was three. The cut off frequeocy of the multilayer films were above 100 MHz.

  • PDF

Optical and Hydrophobic Properties of Ag Deposited ZnO Nanorods on ITO/PET (ITO/PET 기판 위에 성장된 산화아연 나노로드에 형성된 은 입자의 광학적 특성 및 소수성 표면 연구)

  • Ko, Yeong-Hwan;Kim, Myung-Sub;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • We investigated the optical and hydrophobic properties of the deposited silver (Ag) zinc oxide (ZnO) nanorods (NRs) on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates (i.e., ITO/PET). The ZnO NRs were grown by an electrochemical deposition using a sputtered ZnO seed layer and the Ag was deposited by using a thermal evaporator. For comparison, the same fabrication process was carried out on the bare ITO/PET without ZnO NRAs. Due to the discrete surface of ZnO NRs, the deposited Ag was formed as nano-scale particles, while the Ag became film-like for bare ITO/PET. In order to control the size and amount of Ag particles, the Ag deposition time was changed from 100 to 600 s. When the deposition time was increased, the Ag particles became larger and denser, and the absorptance was increased. This enhanced absorptance may be due to the localized surface plasmon resonance of Ag particles. Furthermore, the relatively high hydrophobicity was observed for the deposited Ag on the ZnO NRs/ITO/PET. These improved optical and surface properties are expected to be useful for flexible photovoltaic and optoelectronic devices.

Thermal Stability of Ti-Si-N as a Diffusion Barrier (Cu와 Si간의 확산방지막으로서의 Ti-Si-N에 관한 연구)

  • O, Jun-Hwan;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2001
  • Amorphous Ti-Si-N films of approximately 200 and 650 thickness were reactively sputtered on Si wafers using a dc magnetron sputtering system at various $N_2$/Ar flow ratios. Their barrier properties between Cu (750 ) and Si were investigated by using sheet resistance measurements, XRD, SEM, RBS, and AES depth profiling focused on the effect of the nitrogen content in Ti-Si-N thin film on the Ti-Si-N barrier properties. As the nitrogen content increases, first the failure temperature tends to increase up to 46 % and then decrease. Barrier failure seems to occur by the diffusion of Cu into the Si substrate to form Cu$_3$Si, since no other X- ray diffraction intensity peak (for example, that for titanium silicide) than Cu and Cu$_3$Si Peaks appears up to 80$0^{\circ}C$. The optimal composition of Ti-Si-N in this study is $Ti_{29}$Si$_{25}$N$_{46}$. The failure temperatures of the $Ti_{29}$Si$_{25}$N$_{465}$ barrier layers 200 and 650 thick are 650 and $700^{\circ}C$, respectively.ely.

  • PDF