• Title/Summary/Keyword: Sputter gas

Search Result 184, Processing Time 0.021 seconds

A Study of Structure & Composition Characteristics of the(Ti, Al) N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al) N 피막의 조성 및 조직특성연구)

  • 최장현;이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.223-233
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel by D.C. magnetron sputtering using Al target and Ti plate. The properties of (Ti, Al)N films such as composition, microhardness, grain size, crystal structure were investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The higher bias voltage to substrate and the smaller input of N2 gas showedthe increased microhardness and the finer grain size of the films. The results obtained from this study show, it is belived, that the (Ti, Al)N film by D.C.magne-tron sputtering is promising in the wear resistance use.

  • PDF

Pumping speed of a sputter ion pump with a honeycomb anode cell structure (벌집형 셀 구조를 가지는 스퍼터 이온펌프의 성능 분석)

  • Ha, T.;Ahn, B.;Lee, D.;Kim, J.;Chung, S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We measured pumping speed of a sputter ion pump with a honeycomb anode cell structure and compared the result with that of another sputter ion pump with a typical cylindrical anode cell structure. A cell module with a honeycomb structure has no dead space which is about 10 % of the entire horizontal area of the cell module with a cylindrical structure. This dead space makes a little contribution to the ionization of the gas, so the pumping performance of the pump with dead space is expected to be lowered by the amount. From the experimental data we concluded that the honeycomb cell structure is superior to the cylindrical structure by $5{\sim}10%$ in performance.

Characteristics of ZnO Thin film by Gas Ratio (Gas비에 따른 ZnO박막의 압전특성)

  • Lee, Woo-Sun;Cho, Joon-Ho;Chung, Hun-Sang;Chung, Chan-Moon;Son, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.103-105
    • /
    • 2001
  • ZnO thin films on glass substrate were deposited by RF sputter with various $Ar/O_2$ gas ratio. Crystallinities, surface morphologies, and electrical properties of the films were investigated by XRD(x-ray diffractometer), and SEM (scanning electron microscopy) analyses. The facing targets sputtering system can deposit thin film at plasma free condition and change the deposition condition in wide range. We suggested that a very suitable $Ar/O_2$ gas of ratio should be 50/50 for preparation of high quality ZnO films with good C-axis orientation.

  • PDF

Effects of Deposition Parameters on Sputter Deposition of Lead Titanate Thin Films (스퍼터링 증착에 의한 $PbTiO_3$ 박막제조시 증착변수의 영향)

  • 김상섭;강영민;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.578-588
    • /
    • 1993
  • Highly c-axis oriented ferroelectric PbTiO3 thin films were deposited on MgO single crystal substrates by RF magnetron sputtering. We have studied the effects of substrate temperature, RF input power, gas comosition, gas pressure and deposition rate on the chemical and structural characteristics of PbTiO3 thin films. The epitaxy relationship of c-axis oriented films was found to be PbTiO3{100}//MgO(100) and their microstructures were highly mosaic. It was found that the most important parameter to achieve epitaxial PbTiO3 films was the substrate temperature. The activation energy for the epitaxy formation was about 0.92eV. Lower gas pressure and RF input power were favorable for the formation of epitaxial c-axis orientation. It was also found that the optimum oxygen content in Ar gas was 10% to obtain the stoichiometric PbTiO3 composition.

  • PDF

PREPARATION OF HYDROXYAPATITE COATINGS USING R.F. MAGNETRON SPUTTERING

  • Hosoya, Satoru;Sakamoto, Yukihiro;Hashimoto, Kazuaki;Takaya, Matsufumi;Toda, Yoshitomo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.307-311
    • /
    • 1999
  • The well-crystalline hydroxyapatite($Ca_{10}(PO_4)_6(OH)_2$ ; HAp) layer having a biocompatibility was successfully coated onto titanium substrate using a radio-frequency magnetron sputtering, and effects of sputtering gas and the thickness of HAp film on a crystal growth of the HAp layers were investigated. The deposition rate of the layer sputtered with water-vapour gas was slower than that of the layer sputtered with argon gas. The results of X-ray diffraction demonstrated that the about $0.8\mu\textrm{m}$ thick HAp film under water-vapour gas was an amorphous phase, the about $1.2\mu\textrm{m}$ thick film was (100) plane-oriented HAp, and the about $1.5\mu\textrm{m}$ thick film was (001)plane-oriented HAp. FT-IR analysis proved that hydroxyl group of the layer sputtered with argon gas was defected, but that of the layer sputtered with water-vapour gas was not defected. From these results, it was favorable to use water-vapour gas on the HAp coatings onto metal surface.

  • PDF

Characteristic of Zr(Si)N film as a diffusion barrier between Cu metal and Si substrate (Cu 금속과 Si 기판 사이에서 확산방지막으로 사용하기 위한 Zr(Si)N 박막의 특성)

  • 김좌연;조병철;채상훈;김헌창;박경순
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.283-287
    • /
    • 2002
  • We have studied Zr(Si)N film as a diffusion barrier between Cu metal and Si substrate for application of interconnection metal in ULSI circuits. Zr(Si)N film was deposited with reactive DC magnetron sputtering system using $Ar/N_2$mixed gas. The value of the resistivity was the lowest for the ZrN film using 29 : 1 of Ar : $N_2$reactant gas ratio at room temperature and decreased with increasing of Si substrate temperature. As the value of ZrN film resistivity was decreased, the direction of crystal growth was toward to (002) plane. The barrier property of ZrN film added with Si was improved. But Si was added too much in ZrN film, the barrier property was degraded. The adhesive property was improved with increasing of Si in ZrN. For the analysis of the film, XRD, Optical microscopy, Scretch tester, so on were used.

Properties and Preparation of AlNO Multi-layer Thin Films Using DC Magnetron Sputter Method (직류 마그네트론 스퍼터법에 의한 AlNO 복층박막의 제조와 특성)

  • Kim, Hyun-Hoo;Oh, Dong-Hyun;Baek, Chan-Soo;Jang, Gun-Eik;Choi, Dong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.589-593
    • /
    • 2014
  • AlNO multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. $Al_2O_3$/AlNO(LMVF)/AlNO(HMVF)/Al/substrate of 4 multi-layer has been prepared in an Ar and ($N_2+O_2$) gas mixture, and $Al_2O_3$ of top layer is anti-reflection layer on double AlNO(LMVF)/AlNO(HMVF) layers and Al metal of infrared reflection layer. In this study, the roughness and surface properties of AlNO thin films were estimated by field emission scanning electron microscopy(FE-SEM). The grain size of AlNO thin films increased with increasing sputtering power. The composition of thin films has been systematically investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The absorptance of AlNO films shows the increasing trend with swelling ($N_2+O_2$) gas mixture in HMVF and LMVF deposition. The excellent optical performance showed above 98% of absorptance in visible wavelength region.

Effect of Electron Irradiation on the Properties of GZO Thin Film and its Gas Sensor Application (전자빔 표면 조사에 따른 GZO 박막의 물성과 가스센서 응용 연구)

  • Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.140-143
    • /
    • 2011
  • In this work, Ga doped ZnO (GZO) films were prepared by radio frequency (RF) magnetron sputtering without intentional substrate heating on glass substrate and then the effect of the intense electron irradiation on structural and electrical properties and the NOx gas sensitivity were investigated. Although as deposited GZO films showed a diffraction peak for ZnO (002) in the XRD pattern, GZO films that electron irradiated at electron energy of 900 eV showed the higher intense diffraction peaks than that of the as deposited GZO films. The electrical property of the films are also influenced with electron's energy. As deposited GZO films showed the three times higher resistivity than that of the films irradiated at 900 eV In addition, the sensitivity for NOx gas is also increased with electron irradiation energy and the film sensor showed the proportionally increased gas sensitivity with NOx concentration. This approach is promising in gaining improvement in the performance of thin film gas sensors used for the detection of hazard gas phase.

Multifunctional Indium Tin Oxide Thin Films

  • Jang, Jin-Nyeong;Yun, Jang-Won;Lee, Seung-Jun;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.186-186
    • /
    • 2015
  • We have introduced multifunctional ITO single thin films formed by normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions. MFSS ITO also possesses high gas diffusion barrier properties simultaneously low resistivity even it deposited at room temperature without post annealing on plastic substrate. Nano-crystalline enhancement by Ar energy has energy window from 20 to 30 eV under blocking NOI condition. Effect of blocking NOI and optimal Ar energy window enhancement facilitate that resistivity is minimized to $3.61{\times}10^{-4}{\Omega}cm$ and the WVTR of 100 nm thick MFSS ITO is $3.9{\times}10^{-3}g/(m^2day)$ which is measured under environmental conditions of 90% relative humidity and 50oC that corresponds to a value of ${\sim}10^{-5}g/(m^2day)$ at room temperature. The multifunctional MFSS ITO with low resistivity, and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

Effects of metal catalysts on the characteristics of NO sensor using ZnO thin film as sensing material (금속 촉매가 ZnO 박막을 감지물질로 이용한 NO 센서의 특성에 미치는 영향)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2010
  • This paper describes the fabrication and characteristics of NO sensor using ZnO thin film by RF magnetron sputter system. The sensitivity, working temperature, and response time of sputtered pure ZnO thin film and added catalysts such as Pt, Pd, Al, Ti on those films were measured and analyzed. The sensitivity of pure ZnO thin film at working temperature of $300^{\circ}C$ is 0.875 in NO gas concentration of 0.046 ppm. At same volume of the gas in chamber, measuring sensitivity of 1.87 at $250^{\circ}C$ was the case of Pt/ZnO thin film. The ZnO thin films added with catalyst materials were showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film.