• Title/Summary/Keyword: Sputter Deposition

Search Result 340, Processing Time 0.025 seconds

Nano-Mechanical Studies of HfOx Thin Film for Oxygen Outgasing Effect during the Annealing Process (고온 열처리 과정에서 산소 Outgasing 효과에 의한 HfOx 박막의 Nanomechanics 특성 연구)

  • Park, Myung Joon;Kim, Sung Joon;Lee, Si Hong;Kim, Soo In;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.245-249
    • /
    • 2013
  • The $HfO_X$ thin film was deposited what it has been paid attention to the next generation oxide thin layer of MOSFET (metal-Oxide semiconductor field-effect-transistor) by rf magnetron sputter on Si (100) substrate. The $HfO_X$ thin film was deposited using a various oxygen gas flows (5, 10, 15 sccm). After deposition, $HfO_X$ thin films were annealed from 400 to $800^{\circ}C$ for 20 min in nitrogen ambient. The electrical characteristics of the $HfO_X$ thin film was improved by leakage current properties, depending on the increase of oxygen gas flow and annealing temperature. In particular, the properties of nano-mechanics of $HfO_X$ thin films were measured by AFM and Nano-indenter. From the results, the maximum indentation depth at the basis of maximum indentation force was increased from 24.9 to 38.8 nm according to increase the annealing temperature. Especially, the indentation depth was increased rapidly at $800^{\circ}C$. The rapid increasement of indentation depth was expected to be due to the change of residual stress in the $HfO_X$ thin film, and this result was caused by relative flux of oxygen outgasing during the annealing process.

Microstructure Evolution and Properties of Silicides Prepared by dc-sputtering (스퍼터링으로 제조된 니켈실리사이드의 미세구조 및 물성 연구)

  • An, Yeong-Suk;Song, O-Seong;Lee, Jin-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.601-606
    • /
    • 2000
  • Nickel mono-silicide(NiSi) shows no increase of resistivity as the line width decreases below 0.15$\mu\textrm{m}$. Furthermore, thin silicide can be made easily and restrain the redistribution of dopants, because NiSi in created through the reaction of one nickel atom and one silicon atom. Therefore, we investigated the deposition condition of Ni films, heat treatment condition and basic properties of NiSi films which are expected to be employed for sub-0.15$\mu\textrm{m}$ class devices. The nickel silicide film was deposited on the Si wafer by using a dc-magnetron sputter, then annealed at the temperature range of $150~1000^{\circ}C$. Surface roughness of each specimen was measured by using a SPM (scanning probe microscope). Microstructure and qualitative composition analysis were executed by a TEM-EDS(transmission electron microscope-energy dispersive x-ray spectroscope). Electrical properties of the materials at each annealing temperature were measured by a four-point probe. As the results of our study, we may conclude that; 1. SPM can be employed as a non-destructive process to monitor NiSi/NiSi$_2$ transformation. 2. For annealing temperature over $800^{\circ}C$, oxygen pressure $Po_2$ should be kept below $1.5{\times}10^{-11}torr$ to avoid oxidation of residual Ni. 3. NiSi to $NiSi_2$ transformation temperature in our study was $700^{\circ}C$ from the four-point probe measurement.

  • PDF

Effects of Pretreatment of Alkali-degreasing Solution for Cu Seed Layer (약알칼리탈지 용액에서의 구리 Seed 층의 전처리 효과)

  • Lee, Youn-Seoung;Kim, Sung-Soo;Rha, Sa-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2012
  • In order to understand a process of contaminants removal on surface of Cu seed layer (Cu seed/Ti/Si) by sputter deposition, we investigated the changed morphology and states of Cu seed surface after pretreatment in alkali degreasing Metex TS-40A solution according to dipping time. After TS-40A pretreatment, the surface morphology with clearer grains was observed by Field emission scanning electron microscope and the changed surface chemical states and impurities on surface of samples were checked by X-ray photoelectron spectroscopy. Dipping time in TS-40A solution had very little effect on surface of Cu seed layer. After pretreatment, much carbons and little oxygens on surface of Cu seed were eliminated and the decrease of peaks corresponded to O=C and $Cu(OH)_2$ was estimated. However, Si content (=silicate) was detected on sample surface. We think that the silicate impurity forms on Cu seed by chemical reaction of TS-40A solution included silicate component. By pretreatment of alkali degreasing Metex TS-40A solution, it showed an excellent effect in removal of O=C and $Cu(OH)_2$ on Cu seed layer, but the silicate was formed on surface of Cu seed. Therefore, another cleaning process such as acid cleaning is required for removal of this silicate in use of this alkali degreasing.

Step-Coverage Consideration of Inter Metal Dielectrics in DLM Processing : PECVD and $O_3$ ThCVD Oxides (이층 배선공정에서 층간 절연막의 층덮힘성 연구 : PECVD와 $O_3$ThCVD 산화막)

  • Park, Dae-Gyu;Kim, Chung-Tae;Go, Cheol-Gi
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.228-238
    • /
    • 1992
  • An investigation on the step-coverage of PECVD and $O_3$ ThCVD oxides was undertaken to implement into the void-free inter metal dielectric planarization using multi-chamber system for the submicron double level metallization. At various initial aspect ratios the instantaneous aspect ratios were measured through modelling and experiment by depositing the oxides up to $0.9{\mu}m$ in thickness in order to monitor the onset of void formation. The modelling was found to be in a good agreement with the observed instantaneous aspect ratio of TEOS-based PECVD oxide whose re-entrant angle was less than $5^{\circ}$. It is demonstrated that either keeping the instantaneous aspect ratio of PECVD oxide as a first layer less than a factor of 0.8 or employing Ar sputter etch to create sloped oxide edge ensures the void-free planarization after$O_3$ ThCVD oxide deposition whose step-coverage is superior to PECVD oxide. It has been observed that $O_3$ ThCVD oxide etchback scheme has shown higher yield of via contact chain than non etchback process, with resistance per via contact of $0.1~0.3{\Omega}/{\mu}m^2$.

  • PDF

Fabrication of $TiO_{2}$ In-line Reflection Mirror and Its Characteristics for Fiber Optic Fabry-Perot Interferometric Sensor (광섬유 Fabry-Perot 간섭형 센서 제조를 위한 $TiO_{2}$ 반사막의 형성 및 그 특성)

  • Park, Dong-Soo;Kim, Myung-Gyoo;Kim, Chang-Won;Lee, Jung-Hee;Kang, Shin-Won;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.71-79
    • /
    • 1995
  • For the fabrication of high sensitive intrinsic fiber optic Fabry-Perot interferometeric sensor, the deposition conditions of $TiO_{2}$ thin film used to the internal mirrors of the sensor were investigated. The $TiO_{2}$ film deposited by RF magnetron sputter had higher refractive index ($2.36{\sim}2.48$) and better stoiciometry (O/Ti = 2) than that deposited bye-beam evaporator. In the case of forming $TiO_{2}$ internal mirror by using fusion splicing technique, the $TiO_{2}$ reflection mirror deposited by RF magnetron sputter in the condition of 120W RF power showed high. reflectance and excellent controllability of reflection power. The fabricated intrinsic fiber optic Fabry-Perot interferometer with two $TiO_{2}$ internal mirrors deposited under the condition showed very stable fringe patterns. It is, therefore, expected that the interferometer will be applicable to various high precision sensors.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

Enhanced Gas Sensing Properties of Bi2O3-Core/In2O3-Shell Nanorod Gas Sensors

  • Park, Sung-Hoon;An, So-Yeon;Ko, Hyun-Sung;Jin, Chang-Hyun;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3368-3372
    • /
    • 2012
  • The $Bi_2O_3$ nanowires are highly sensitive to low concentrations of $NO_2$ in ambient air and are almost insensitive to most other common gases. However, it still remains a challenge to enhance their sensing performance and detection limit. This study examined the influence of the encapsulation of ${\beta}-Bi_2O_3$ nanorods with $In_2O_3$ on the $NO_2$ gas sensing properties. ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorods were fabricated by a two-step process comprising the thermal evaporation of $Bi_2O_3$ powders and sputter-deposition of $In_2O_3$. Multiple networked ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorod sensors showed the responses of 12-156% at 1-5 ppm $NO_2$ at $300^{\circ}C$. These response values were 1.3-2.7 times larger than those of bare ${\beta}-Bi_2O_3$ nanorod sensors at 1-5 ppm $NO_2$. The enhancement in the response of ${\beta}-Bi_2O_3$ nanorods to $NO_2$ gas by the encapsulation by $In_2O_3$ can be accounted for based on the space-charge model.

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF

Fabrication of Oxide Thin Films Using Nanoporous Substrates (나노기공성 기판을 사용한 산화물박막의 제조)

  • Park, Yong-Il;Prinz, Fritz B.
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.900-906
    • /
    • 2004
  • Solid oxide fuel cells have a limitation in their low-temperature application due to the low ionic conductivity of electrolyte materials and difficulties in thin film formation on porous gas diffusion layer. These problems can be solved by improvement of ionic conductivity through controlled nanostructure of electrolyte and adopting nanoporous electrodes as substrates which have homogeneous submicron pore size and highly flattened surface. In this study, ultra-thin oxide films having submicron thickness without gas leakage are deposited on nanoporous substrates. By oxidation of metal thin films deposited onto nanoporous anodic alumina substrates with pore size of $20nm{\sim}200nm$ using dc-magnetron sputtering at room temperature, ultra-thin and dense ionic conducting oxide films with submicron thickness are realized. The specific material properties of the thin films including gas permeation, grain/gran boundaries formation, change of crystalline structure/microstructure by phase transition are investigated for optimization of ultra thin film deposition process.