• Title/Summary/Keyword: Sputter Deposition

Search Result 340, Processing Time 0.029 seconds

Optimal Sputtering Parameters of Transparent Conducting ITO Films Deposited on PET SUbstates

  • Kim, Hyun-Hoo;Shin, Sung-ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.23-27
    • /
    • 2000
  • Indium in oxide(ITO) films have been deposited on PET and glass substrates by DC reactive magnetron sputtering without post-deposition thermal treatment, The high quality for microstructure, electrical and optical properties of the as-deposited ITO films on unheated substrates is dominated by the sputtering parameters, The influence of the working gas pressure, DC power and oxygen partial pressure has been systematically investigated, The lowest DC power, and oxygen partial pressure has been systematically investigated, The lowest resistivity of ITO films deposited on PET substrates was 6$\times$10$^{-4}$ $\Omega$cm. It has been obtained at a working pressure of 3 mTorr and DC power of 30 W. The sheet resistance and optical transmittance of these film were 22 $\Omega$/square and 84% respectively. The best values of figures of merit for the electrical and optical characteristics such as T/ $R_{sh}$ and $T^{10}$ / $R_{sh}$ are approximately 38.1 and 7.95($\times$10$^{-3}$ $\Omega$$^{-1}$ ), respectively.

  • PDF

A study on properties of ZnO:Al films on PC substrate for solar cell applications (태양전지 응용을 위한 PC 기판상의 ZnO:Al 박막 특성에 관한 연구)

  • Na, Young-Il;Kim, Young-Dong;Lee, Jae-Heong;Jung, Hak-Kee;Lee, Jong-In;Lim, Dong-Gun;Yang, Kea-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.357-360
    • /
    • 2004
  • Al doped ZnO thin films have been were properties of excellent optical transmittance, low resistivity and wide bandgap where be widely used transparent electrode on solar cell. In this paper, ZnO:Al thin films on PC substrate were prepared by RF magnetron sputtering method using ceramic taget with diffrent deposition conditions. In addition, the electrical, structural, optical properties were investigated. we investigated sample properties of Sputter powers and pressures change in $25{\sim}125W,\;2{\times}10^{-2}{\sim}2{\times}10^{-3}Torr$.

  • PDF

The New Design of Dye-Sensitized Solar Cell Adopted by Sputter Deposition of Counter Electrode (상대전극을 스퍼터링 증착한 염료 감응형 태양전지의 새로운 디자인)

  • Kim, Hee-Je;Song, Keun-Ju;Jeon, Jin-An;Lee, Dong-Yun;Kim, Whi-Young;Choi, Jin-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.154-157
    • /
    • 2006
  • The counter electrode widely used in DSCs (Dye-sensitized Solar Cells) is constructed of conducting glass substrates coated with Pt films, where the platium acts as a catalyst. Pt counter electrodes in DSCs are one important component. It is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, Pt counter electrode surface of DSC is deposited by reactive RF magnetron sputtering under the conditions of Ar 5mtorr, RF power of 120w and substrate temperature of $100^{\circ}C$. Surface morphology of Pt electrodes was investigated by FE-SEM and AFM. And this paper shows our recent results and technology to fabricate the new designed cell with Pt electrodes deposited by sputtering method. We have achieved fill factor 65% and photoelectric conversion efficiency around 2.6% as the best results of new designed DSCs structure.

  • PDF

PREPARATION OF HYDROXYAPATITE COATINGS USING R.F. MAGNETRON SPUTTERING

  • Hosoya, Satoru;Sakamoto, Yukihiro;Hashimoto, Kazuaki;Takaya, Matsufumi;Toda, Yoshitomo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.307-311
    • /
    • 1999
  • The well-crystalline hydroxyapatite($Ca_{10}(PO_4)_6(OH)_2$ ; HAp) layer having a biocompatibility was successfully coated onto titanium substrate using a radio-frequency magnetron sputtering, and effects of sputtering gas and the thickness of HAp film on a crystal growth of the HAp layers were investigated. The deposition rate of the layer sputtered with water-vapour gas was slower than that of the layer sputtered with argon gas. The results of X-ray diffraction demonstrated that the about $0.8\mu\textrm{m}$ thick HAp film under water-vapour gas was an amorphous phase, the about $1.2\mu\textrm{m}$ thick film was (100) plane-oriented HAp, and the about $1.5\mu\textrm{m}$ thick film was (001)plane-oriented HAp. FT-IR analysis proved that hydroxyl group of the layer sputtered with argon gas was defected, but that of the layer sputtered with water-vapour gas was not defected. From these results, it was favorable to use water-vapour gas on the HAp coatings onto metal surface.

  • PDF

Influence of Ag Thickness on Electrical and Optical Properties of AZO/Ag/AZO Multi-layer Thin Films by RF Magnetron Sputtering (RF magnetron sputter에 의해 제조된 AZO/Ag/AZO 다층박막의 Ag 두께가 전기적 광학적 특성에 미치는 영향)

  • An Jin-Hyung;Kang Tea-Won;Kim Dong-Won;Kim Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • Al-doped ZnO(AZO)/Ag/AZO multi-layer films deposited on PET substrate by RF magnetron sputtering have a much better electrical properties than Al-doped ZnO single-layer films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the optimum thickness of Ag layers was determined to be $112{\AA}$ for high optical transmittance and good electrical conductivity. With about $1800{\AA}$ thick AZO films, the multi-layer showed a high optical transmittance in the visible range of the spectrum. The electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. A high quality transparent electrode, having a resistance as low as $6\;W/{\square}$ and a high optical transmittance of 87% at 550 nm, was obtained by controlling Ag deposition parameters.

A Study on the Potassium Gettering in Al-1%Si/SiO2/PSG Multilevel Thin Films (Al-1%Si/SiO2/PSG 적층 박막에서 potassium 게터링에 관한 연구)

  • Kim, Jin Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.233-237
    • /
    • 2015
  • In order to investigate the potassium (K) gettering, Al-1%Si/$SiO_2$/PSG multilevel thin films were fabricated. Al-1%Si thin films and $SiO_2$/PSG passivations were deposited by using DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition), respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling analysis was used to determine the distribution of K, Al, Si, P, and other elements throughout the $SiO_2$/PSG passivated Al-1%Si thin film interconnections. Potassium peaks were observed throughout the $SiO_2$/PSG passivation layers, and especially the interface gettering at the $SiO_2$/PSG and at the Al-1%Si/$SiO_2$ interfaces was observed. Potassium gettering in Al-1%Si/$SiO_2$/PSG multilevel thin films is considered to be caused by a segregation type of gettering.

Effects on Heat Treatment Methods in Indium-Tin-Oxide Films by DC Magnetron Sputter of Powder Target

  • Kim, H.H.;Shin, J.H.;Baek, J.Y.;Shin, S.H.;Park, K.J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • ITO (Indium-tin-oxide) thin films were deposited on glass substrates by a dc magnetron sputtering system using ITO powder target. The methods of heat treatment are important factor to obtain high quality ITO films with low electrical resistivity and good optical transmittance. Therefore, both methods of the substrate temperature and post-deposition annealing temperature have been compared on the film structural, electrical and optical properties. A preferred orientations shifts from (411) to (222) peak at annealing temperature of 200$\^{C}$. Minimum resistivity of ITO film is approximately 8.7$\times$10$\^$-4/ Ωcm at substrate temperature of 450$\^{C}$. Optical transmittances at post annealing temperature above 200$\^{C}$ are 90%. As a result, the minimum value of annealing temperature that is required for the recrystallization of as-deposited ITo thin films is 200$\^{C}$.

  • PDF

Post-annealing Effect of NiO Thin Film Grown by RF Sputtering System on 4H-SiC Substrate (4H-SiC 기판 위에 RF Sputter로 증착된 NiO 박막의 후열처리 효과)

  • Soo-Young Moon;Min-Yeong Kim;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • Nickel oxide is a nonstoichiometric transparent conductive oxide with p-type conductivity, a wide-band energy gap of 3.4~4.0 eV, and excellent chemical stability, making it a very important candidate as a material for bipolar devices. P-type conductivity in Transparent Conductive Oxides (TCO) is controlled by the oxygen vacancy concentration. During the TCO film deposition process, additional oxygen diffusing into the NiO structure causes the formation of Ni 3p ions and Ni vacancies. This eventually affects the hole concentration of the p-type oxide thin film. In this work, the surface morphology and the electrical characteristics were confirmed in accordance with the annealing atmosphere of the nickel oxide thin film.

Role of Aluminum Top-layer on Synthesis of Carbon Nanotubes using Laminated Catalyst(Al/Fe/Al) layer (적층구조 촉매층(Al/Fe/Al)을 이용한 탄소나노튜브의 합성에서 최상층 알루미늄 층의 역할)

  • Song, W.;Choi, W.C.;Jeon, C.;Ryu, D.H.;Lee, S.Y.;Shin, Y.S.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • In this study, we report the synthesis of the single-walled carbon nanotubes(SWCNTs) using laminated catalyst(Al/Fe/Al) layer deposited by sputter on Si(001). SWCNTs are grown by thermal chemical vapor deposition (TCVD) method. As the results of scanning electron microscopy(SEM), high resolution transmission electron microscopy(HR-TEM) and Raman spectroscopy, we confirmed the SWCNTs bundles with narrow diameter distribution of $1.14{\sim}1.32\;nm$ and average G&D ratio of 22.76. Compare to the sample having Fe/Al catalyst layer, it can be proposed that the top-aluminum incorporated with iron catalyst plays an important role in growing process of CNTs as a agglomeration barrier of the Fe catalyst. Thus, we suggest that a proper quantity of aluminium metal incorporated in Fe catalyst induce small and uniform iron catalysts causing SWCNTs with narrow diameter distribution.

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF