• Title/Summary/Keyword: Sputter Deposition

Search Result 340, Processing Time 0.04 seconds

Nano Ceramic Coating on Polypropylene Separator for Safety-Enhanced Lithium Secondary Battery (고안전성 리튬이차전지 구현을 위한 나노 세라믹 코팅 분리막 제조 및 전기화학특성 분석)

  • Lee, Jungmo;Jeon, Hyunkyu;Han, Taeyeong;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Herein, we have fabricated an ultrathin aluminum oxide ($Al_2O_3$) coated PP separator by using a RF sputter deposition process. Approximately 20 nm thickness coating layer on the bare PP separator was formed at the power of 55 W for 2 minutes without thermal damage. Whereas only permeability of the coated separator was degraded slightly, other properties such as thermal stability, uptake amount of liquid electrolyte, and ionic conductivity were improved comparing to the bare PP separator. As a result, an only 20-nm-thick $Al_2O_3$ coating layer could improve the rate capability compared with a bare PP separator under a high current density.

The characteristics of Pt thin films prepared by DC magnetron sputter (DC Magnetron Sputter로 제조된 Pt 박막의 특성)

  • Na, Dong-Myong;Kim, Young-Bok;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2007
  • Thin films of platinum were deposited on a $Al_{2}O_{3}/ONO(SiO_{2}-Si_{3}N_{4}-SiO_{2})/Si$-substrate with an 2-inch Pt(99.99 %) target at room temperature for 20, 30 and 60 min by DC magnetron sputtering, respectively X-ray diffract meter (XRD) was used to analyze the crystallanity of the thin films and field emission scanning electron microscopy (FE-SEM) was employed for the investigation on crystal growth. The densification and the grain growth of the sputtered films have a considerable effect on sputtering time and annealing temperatures. The resistance of the Pt thin films was decreased with increasing deposition time and sintering temperature. Pt micro heater thin film deposited for 60 min by DC magnetron sputtering on an $Al_{2}O_{3}$/ONO-Si substrate and annealed at $600^{\circ}C$ for 1 h in air is found to be a most suitable micro heater with a generation capacity of $350^{\circ}C$ temperature and 645 mW power at 5.0 V input voltage. Adherence of Pt thin film and $Al_{2}O_{3}$ substrate was also found excellent. This characteristic is in good agreement with the uniform densification and good crystallanity of the Pt film. Efforts are on progress to find the parameters further reduce the power consumption and the results will be presented as soon as possible.

A Study on Control System of Multi Layer Sputtering Equipment (다층 박막 스퍼터링 장비의 제어시스템에 관한 연구)

  • Lee, Sun-Jong;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.302-308
    • /
    • 2018
  • Multi-Layer Sputtering is aim to develop desired thickness thin film multi-layer with different materials. The multi-layer thin film deposition process occupies a relatively large portion in the process time, because the main reason is that it takes much time to move the substrate to be deposited and to make the chamber into a high vacuum state compared to the process time. Most of semiconductor and display industries sputter a single substance in one chamber and move boards through multi-continuous robots to another chamber to sputter other materials. This will inevitably require multiple chambers, vacuum pumps, and multi-contamination robots within the process facility. To solve these problems, this paper proposes a control system for multi-layer thin film sputtering devices that deposit different materials within a single vacuum chamber and is applied in TFT process. The manufacture and experiment of the control system proved its validity.

Vacuum Web-coater with High Speed Surface Modification Equipment for fabrication of 300 mm wide Flexible Copper Clad Laminate (FCCL) (초고속 대면적 표면 처리 장치가 부착된 300 mm 폭 연성 동박적층 필림 제작용 진공 웹 코터)

  • Choi, H.W.;Park, D.H.;Kim, J.H.;Choi, W.K.;Sohn, Y.J.;Song, B.S.;Cho, J.;Kim, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2007
  • Prototype of $800{\ell}$ vacuum web coater (Vic Mama) consisting of ion source with low energy less than 250 eV for high speed surface modification and 4 magnetron sputter cathodes was designed and constructed. Its performance was evaluated through fabricating the adhesiveless flexible copper clad laminate (FCCL). Pumping speed was monitored in both upper noncoating zone pumped down by 2 turbo pumps with 2000 l/sec pumping speed and lower surface modification and sputter zone vacuumed by turbo pumps with 450 1/sec and 1300 1/sec pumping speed respectively. Ion current density, plasma density, and uniformity of ion beam current were measured using Faraday cup and the distribution of magnetic field and erosion efficiency of sputter target were also investigated. With the irradiation of ion beams on polyimide (Kapton-E, $38{\mu}m$) at different fluences, the change of wetting angle of the deionized water to polyimide surface and those of surface chemical bonding were analyzed by wetting anglometer and x-ray photoelectron spectroscopy. After investigating the deposition rate of Ni-Cr tie layer and Cu layer was investigated with the variations of roll speed and input power to sputter cathode. FCCL fabricated by sputter and electrodeposition method and characterized in terms of the peel strength, thermal and chemical stability.

Effects of Sputter Deposition Rate on the Thin Film Property (Sputtering 성막속도가 박막의 특성에 미치는 영향)

  • Lee, Ky-Am
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.152-160
    • /
    • 1993
  • In this study, we have investigated the influence of sputtering conditions (Ar pressure input powers, substrates) on coercivity and microstructures of GdFe, Co, CoCr thin films produced by the method of DC magnetron sputtering. In GdFe films, we have observed that the Gd atomic ratio was decreased with the deposition rate, and deposition rate decreased with the pressure of Ar gas and the increased linearly with input power. It was also observed that the coercivity of thin films was increased with input power. In Co films, we have investigated the deposition was increased and the Co thin film became finer structure with the increase in the input power, was increased and the Co thin film became finer structure with the increase in the input power, and the deposition rate was decreased with the pressure of Ar gas. In CoCr films, we have investigated the effects of substrates on the coercivity $(H_c)$ and the microstructure. We have found that the substrates plays a crucial role in the microstructure and the coercivity $(H_c)$.

  • PDF

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Characteristics of amorphous indium tin oxide films on PET substrate grown by Roll-to-Roll sputtering system (저온 Roll-to-Roll 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 전기적, 광학적, 구조적 특성)

  • Cho, Sung-Woo;Bae, Jung-Hyeok;Choi, Kwang-Hyuk;Moon, Jong-Min;Jeong, Jin-A;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.380-381
    • /
    • 2007
  • This paper reports on the deposition conditions and properties of ITO films used as electrode layer in a organic light emitting diodes on a PET substrate. The deposition technique employed was specially designed roll-to-roll sputtering. The oxide was deposited at room temperature in an argon and oxygen plasma on a transparent conducting ITO layer on a PET film. The influence of deposition parameters such as DC power, working pressure and oxygen partial pressure has been investigated, in order to obtain the best compromise between a high deposition rate and adequate electro-optical properties. Electrical and optical properties of ITO films were analyzed by Hall measurement examinations with van der pauw geometry at room temperature and UV/Vis spectrometer analysis, respectively. In addition, the structural properties and surface smoothness were measured by x-ray diffraction and scaning electron microscopy, respectively. From optimized ITO films grown by roll-to-roll sputter system, good electrical$(6.44{\times}10^{-4}\;{\Omega}-cm)$ and optical(above 86 % at 550 nm) properties were obtained. Also, the ITO films exhibited amorphous structure and very flat surface beacause of low deposition temperature.

  • PDF

A Study on the Improvement on the Target Structure in a Magnetron Sputtering Apparatus (마그네트론 스퍼터링 장치의 타겟구조 개선에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • The cylindrical magnetron sputtering has not been widely used, although this system is useful for only certain types of applications such as fiber coatings. This paper presents electrode configurations which improved the complicacy of the target assembly by using the positive voltage power supply. It is a modified type which has a target constructed with a large cylindrical part, a conical part and a small cylindrical part. When positive voltage was applied to an anode, a stable glow discharge was established and a high deposition rate was obtained. The substrate bias current was monitored to estimate the effect of ion bombardment. As a result, it was found that the substrate current was large. With cylindrical and conical cathode magnetron sputter deposition on the surface of the substrate to prevent re-sputtering, ion impact because it can increase the effectiveness with excellent ductility and adhesion of Ti film deposition can be obtained. We board at the front end of the ground resistance of $5\;k{\Omega}$ attached to the substrate potential can be controlled easily, and Ti film deposition with excellent adhesion can be obtained. Microstructure and morphology of Ti films deposited on pure Cu wires were investigated by scanning electron microscopy in relation to preparation conditions. High level ion bombardment was found to be effective in obtaining a good adhesion for Cu wire coatings.

The Electrical Properties and Residual Stress of Pb(Zr,Ti)O$_3$ Piezoelectric Thin Films fabricated by 2- Step Deposition Method (2단계 증착법으로 제조된 Pb(Zr, Ti)O$_3$압전 박막의 전기적 특성 및 잔류 응력에 관한 연구)

  • Kim, Hyuk-Hwan;Lee, Kang-Woon;Lee, Won-Jong;Nam, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.769-775
    • /
    • 2001
  • High quality PZT piezoelectric thin films were sputter- deposited on$ RuO_2$/$SiO_2$/Si substrates by using 2-step deposition method. As the first step, PZT seed layers were fabricated at a low temperature($475^{\circ}C$ ) to form a pure perovskite phase by reducing the volatility of Pb oxide. and then, as the second step, the PZT films were deposited at high temperatures ($530^{\circ}C$~$570^{\circ}C$) to reduce the defect density in the films. By this method, the pure perovskite phase was obtained at high deposition temperature range ($530^{\circ}C$~$570^{\circ}C$) and the superior electrical properties of PZT films were obtained on $RuO_2$substrate : 2Pr : 60$\mu$C/$\textrm{cm}^2$, $E_c: 60kV/cm, \;J_t: 10^{-6}A/cm^2\; at\; 250kV/cm$. The residual stress of PZT films fabricated by the 2-step deposition method was tensile and below 150MPa. It was attempted to control the residual stress in the PZT films by applying a negative bias to the substrate. As the amplitude of the substrate bias was increased, the residual tensile stress was slightly decreased, however, the ferroelectric properties of PZT films were degraded by ion bombardment.

  • PDF