• Title/Summary/Keyword: Spurious Signal Rejection

Search Result 8, Processing Time 0.025 seconds

Low Spurious Image Rejection Mixer for K-band Applications

  • Lee, Moon-Que;Ryu, Keun-Kwan;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.272-275
    • /
    • 2004
  • A balanced single side-band (SSB) mixer employing a sub-harmonic configuration is designed for up and down conversions in K-band. The designed mixer uses anti-parallel diode (APD) pairs to effectively eliminate even harmonics of the local oscillator (LO) spurious signal. To reduce the odd harmonics of LO at the RF port, we employ a balanced configuration for LO. The fabricated chip shows 12$\pm$2dB of conversion loss and image-rejection ratio of about 20dB for down conversion at RF frequencies of 24-27.5GHz. As an up-conversion mode, the designed chip shows 12dB of conversion loss and image-rejection ratio of 20 ~ 25 dB at RF frequencies of 25 to 27GHz. The odd harmonics of the LO are measured below -37dBc.

Design of Half-Wavelength Low-PASS Filter with Wideband Rejection Characteristic (광대역 저지특성을 갖는 반파장 저역통과 여파기 설계)

  • Kim Young-Tae;Kim Young-Ju;Park Jun-Seok;Kim Hyeong-Seok;Lim Jae-Bong;Cho Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.293-295
    • /
    • 2003
  • In this paper, planar harmonic rejection low-pass filter is proposed to effectively suppress spurious response in stop-band. For suppress the unwanted signal such as spurious and harmonics, we presented a new design method controlled the higher order modes. The proposed low-pass filter was shown to suppress the spurious response by more than $20{\sim}40dB$ compared with conventional microstrip low-pass filters. The filter is evaluated by experiment and simulation with good agreement and shown to have attractive properties such as wide stop band range and low insertion loss.

  • PDF

A Novel Method for Rejection of the Spurious Signal in Weaver-Type Up-Conversion Mixer (위버구조 상향변환 혼합기의 스퓨리어스 신호 제거 방법)

  • 김영완;송윤정;김유신;이창석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.661-668
    • /
    • 2004
  • A novel method to reject the spurious signals which are occurred at Weaver-type low-IF transmitter was proposed in this paper. The spurious signals are generated by the gain and phase imbalances of I/Q channel or imperfect characteristics of 90$^{\circ}$ phase shifter in local oscillator for I/Q channel source. By deriving the gain and phase-based functions from RF spurious signal with the channel imbalance information, the lie channel imbalances were deduced as functions with magnitude and sign dependent on I/Q channel imbalance degree. The proposed method compensates the estimated I/Q channel imbalances by correlation values between the down-converted signal obtained by squaring the output signal itself using a simple mixer and the modified baseband signal. By comparing two signals after A/D conversion, the magnitude and sign of each type of imbalances can be determined separately and simultaneously. Based on the I/Q channel imbalance compensation, the spurious signals can be reduced by adjusting the gain and phase values of I or Q channel signal. The way to estimate the channel imbalances of the up-conversion mixer was presented and verified by using theoretical derivations and computer simulations.

Implementation of Self-frequency Synchronizing Circuit using Single-sideband Up-converter and Image Rejection Mixer (단측파대 상향변환기와 이미지제거 혼합기를 이용한 자기동조회로의 구현)

  • Yeom, Seong-Hyeon;Kim, Tae-Young;Kim, Tae-Hyun;Park, Boem-June
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1058-1063
    • /
    • 2010
  • In this paper, we designed self-frequency synchronizing circuit using image rejection mixer(IRM) and single-sideband(SSB) up-converter which can effectively eliminate the image frequencies occurred in multi-channel super-heterodyne receivers and help us to match inter-channel phase. Also the self-frequency synchronizing circuit simplifies system because there need no extra devices for making intermediate frequency(IF) by creating the local signal within several nanoseconds by means of generating the same frequency of IF signal and modulating radio frequency(RF) signal. We adopt the limiting amplifier for the purpose of protecting the circuit from spurious signals which come from the front end side having wide instantaneous bandwidth characteristics and constantly injecting same level into the input local signal of IRM. The IRM we fabricated has image rejection ratio of 27dB, which is good over 7dB for foreign company's. Also, the SSB up-converter we fabricated has 1dB compression point of 18dBm, which is good over 16dB for foreign company's. And the size is compact about one-forth.

An Analysis of Radio Interference in the Rain Radars (강우 레이더 전파간섭 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The interference among the rain radars and interference in the adjacent wireless station due to the spurious signals from the rain radar were analyzed in this paper. The rain radar measures the rain intensity using S-band signal. The measured data are utilized in forecasting the rainfall. The interference among the rain radars or in the adjacent wireless stations may be caused by the operation with low elevation angle and the high output power. Based on the propagation analysis of S band signal and the deduced interference protection ratio of rain radar, the interference due to the rain radar are analyzed. Also, the radiation spectrum characteristics of a rain radar are deduced from the caused interference effects by the spurious signals of the rain radar. To minimize the interference effects for adjacent wireless stations, it is required to get the rejection characteristics of spurious signals above 105 dB. In viewpoints of interference for rain radars, it is necessary to operate the rain radar with a different PRF and operation time opposite to adjacent rain radars.

Microstrip Bandpass Filter for Spurious Resonant Mode Rejection using Metameterial Transmission Line (메타매질 전송선로를 이용한 불요 공진모드 제거용 마이크로스트립 대역통과 필터)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.566-571
    • /
    • 2009
  • In this paper, microstrip bandpass filter combined DCRLH metameterial-cells with a hairpin resonator is designed and fabricated to be transferred only fundamental passband signal, and removed a spurious resonant mode occurring when filter design using a microstrip transmission line is done. The bandpass filter is composed of CCRLH hairpin resonator and DCRLH interdigit metameterial-cells. The hairpin resonator with CCRLH property is implemented between two DCRLH interdigit metameterial-cells with DCRLH property, which is parallel to input port and output port. The interdigit metameterial-cells suppress spurious harmonics occurring on the higher order frequency and improve a filter performance. Insertion loss of the fabricated microstrip bandpass filter on the passband from 1.91GHz to 2.41GHz is 0.2dB, and attenuation on the stopband from 3GHz to 7.7GHz is bellower than -30dB. Therefore, this filter has a good performance for both mobile communications of WCDMA and wireless internet of WiBro.

A System-in-Package (SiP) Integration of a 62GHz Transmitter for MM-wave Communication Terminals Applications

  • Lee, Young-Chul;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.182-188
    • /
    • 2004
  • We demonstrate a $2.1\;{\times}\;1.0\;{\times}\;0.1cm^3$ sized compact transmitter using LTCC System-in-Package (SiP) technology for 60GHz-band wireless communication applications. For low-attenuation characteristics and resonance suppression of the SiP, we have proposed and demonstrated a coplanar double wire-bond transition and novel CPW-to-stripline transition integrating air-cavities as well as novel air-cavities embedded CPW line. The fabricated transmitter achieves an output of 13dBm at a RF frequency of 62GHz, an IF frequency of 2.4GHz, and a LO frequency of 59.6GHz. The up-conversion gain is 11dB, while the LO signal is suppressed with the image rejection mixer below -21.4dBc, and the image and spurious signals are also suppressed below -31dBc.

W-Band MMIC chipset in 0.1-㎛ mHEMT technology

  • Lee, Jong-Min;Chang, Woo-Jin;Kang, Dong Min;Min, Byoung-Gue;Yoon, Hyung Sup;Chang, Sung-Jae;Jung, Hyun-Wook;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.549-561
    • /
    • 2020
  • We developed a 0.1-㎛ metamorphic high electron mobility transistor and fabricated a W-band monolithic microwave integrated circuit chipset with our in-house technology to verify the performance and usability of the developed technology. The DC characteristics were a drain current density of 747 mA/mm and a maximum transconductance of 1.354 S/mm; the RF characteristics were a cutoff frequency of 210 GHz and a maximum oscillation frequency of 252 GHz. A frequency multiplier was developed to increase the frequency of the input signal. The fabricated multiplier showed high output values (more than 0 dBm) in the 94 GHz-108 GHz band and achieved excellent spurious suppression. A low-noise amplifier (LNA) with a four-stage single-ended architecture using a common-source stage was also developed. This LNA achieved a gain of 20 dB in a band between 83 GHz and 110 GHz and a noise figure lower than 3.8 dB with a frequency of 94 GHz. A W-band image-rejection mixer (IRM) with an external off-chip coupler was also designed. The IRM provided a conversion gain of 13 dB-17 dB for RF frequencies of 80 GHz-110 GHz and image-rejection ratios of 17 dB-19 dB for RF frequencies of 93 GHz-100 GHz.