• Title/Summary/Keyword: Sprout

Search Result 804, Processing Time 0.019 seconds

Microbiological Evaluation of Foods and Kitchen Environments in Childcare Center and Kindergarten Foodservice Operations (보육시설과 유치원 급식의 식품 및 환경 미생물의 오염도 평가)

  • Seol, Hye-Rin;Park, Hyoung-Su;Park, Ki-Hwan;Park, Ae-Kyung;Ryu, Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.252-260
    • /
    • 2009
  • Whereas the numbers of childcare centers and kindergartens are increasing rapidly, systematic management to control the food safety of foodservice operation is not yet well established. Samples from 12 centers in Seoul and Gyeonggi Province were collected to assess the microbiological quality of 32 raw materials, 24 cooked foods, 76 food-contact surfaces (knives, cutting boards, dish towels and gloves), 17 employees' hands and 12 air-borne bacteria. The microbiological analyses were performed for aerobic plate counts (APC), Enterobacteriaceae, E. coli and 7 pathogens (B. cereus, C. jejuni, C. perfringens, L. monocytogenes, Salmonella spp., S. aureus, and V. parahaemolyticus). Among raw materials, E. coli ($1.39{\sim}2.08\;\log\;CFU/g$) were detected in 4 out of 6 meats and 7.46 log CFU/g of APC in tofu. High enterobacteriaceae levels of 4.23, 5.14 and 4.19 log CFU/g were found in cucumber salad, steamed spinach with seasonings and steamed bean sprout with seasonings, respectively. No pathogens were found in all samples except for C. perfringens detected from raw spinach and raw lotus root. Only APC and enterobacteriaceae were found in food-contact surfaces. Two of the 23 knives and three of the 24 kitchen boards showed over 500 CFU/$100\;cm^2$ of APC; also, APC levels (5.03 to 5.44 log CFU/g) were detected in 4 of the 12 dish towels. Only one glove showed Enterobacteriaceae (2.44 log CFU/glove) contamination. Enterobacteriaceae were found in 2 employees' hands ($2.37{\sim}4.44\;\log\;CFU$/hand) among the 16 employees. The contamination levels of air-borne bacteria were shown unacceptable in two (2.25 and 2.30 log CFU/petri-film/15 min) out of the 12 kitchen areas. These results suggest that the microbiological hazards in some foods and environments are not well controlled and thus a guideline should be provided to ensure the food safety in childcare center and kindergarten foodservice operations.

Analysis of Manganese Contents in 30 Korean Common Foods (한국인 상용식품 중 30종류 식품의 망간 함량 분석)

  • 최미경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1408-1413
    • /
    • 2003
  • This study was conducted to analyze manganese contents of Korean common foods. Contents of manganese in 30 foods were analyzed by ICP spectrometer. And daily manganese intake through 30 common foods was calculated using analysis data of this study and daily food intakes cited from report on 1998 national health and nutrition survey. The average manganese contents of foods analyzed were 949.6 $\mu\textrm{g}$ for rice, 236.1 $\mu\textrm{g}$ for Korean chinese cabbage kimchi, 27.2 $\mu\textrm{g}$ for citrus fruit, 2.6 $\mu\textrm{g}$ for milk, 214.6 $\mu\textrm{g}$ for radish root, 40.0 $\mu\textrm{g}$ for apple, 60.4 $\mu\textrm{g}$ for persimmon, 13.9 $\mu\textrm{g}$ for pork, 9.5 $\mu\textrm{g}$ for beef, 638.3 $\mu\textrm{g}$ for soybean curd, 184.0 $\mu\textrm{g}$ for radish kimchi, 56.0 $\mu\textrm{g}$ for pear, 18.4 $\mu\textrm{g}$ for beer, 11.3 $\mu\textrm{g}$ for egg, 9.5 $\mu\textrm{g}$ for carbonated beverage, 345.0 $\mu\textrm{g}$ for bread, 50.7 $\mu\textrm{g}$ for soju, 270.3 $\mu\textrm{g}$ for potato, 236.1 $\mu\textrm{g}$ for sweet potato, 91.2 $\mu\textrm{g}$ for ramyeon, 32.5 $\mu\textrm{g}$ for onion, 68.0 $\mu\textrm{g}$ for nabak kimchi, 538.2 $\mu\textrm{g}$ for soybean sprout, 112.5 $\mu\textrm{g}$ for welsh onion, 336.7 $\mu\textrm{g}$ for rice cake, 589.9 $\mu\textrm{g}$ for Korean chinese cabbage, 430.4 $\mu\textrm{g}$ for somyeon, 144.3 $\mu\textrm{g}$ for pumpkin, 3.0 $\mu\textrm{g}$ for yoghurt, and 614.4 $\mu\textrm{g}$ for spinach per 100 g of each food. The daily manganese intake through 30 common foods of Koreans in 1998 was 3420.7 $\mu\textrm{g}$. Major sources of dietary manganese were rice, kimchi, and soybean curd. Especially, rice supplied 68.1% of total dietary manganese intake through 30 common foods. Further studies are required to establish database and RDA of manganese.

History of Plant Protection Science since 1900 in Korea (한국(韓國)에 있어서의 식물보호(植物保護) 연구사(硏究史) -1900년대(年代)를 중심(中心)으로-)

  • Park, Jong-Seong
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.1
    • /
    • pp.69-95
    • /
    • 1979
  • The study was conducted to search developmental process of plant protection science from review of forty-three hundreds literatures presented since 1900 in Korea and to forecast future statues of the science to be done. About 80 percent of literatures related to plant protection science such as plant pathology, applied entomology, weed science and agricultural pharmacology were collected from publications of agricultural and forestry reseach organizations attached to Office of Rural Development and Office of Forestry. The rest of literatures were mainly collected from Korean Journal of Plant Protection Society and small number of literatures were also collected from publications of the other journals of crop science and thesis collection of agricultural colleges. In Korea, research organizations of plant protection science are divided into two main groups such as exclusive agricultural research organizations and agricultural colleges. It is pointed out that the former contributions to plant protection science are very great compared to those of the latter since 1900. From periodical consideration of developmental process of the science since 1900, the history or the science are divided into three eras such as introduction and sprout of modern plant protection science during the first forty years, distress of the science during the following twenty years including the Second World War and the Korean War and rapid growth of the science after 1961. In spite of long time distress of the science during the Second World War and the Korean War, the researches on plant protection science in post-war have been done twice as many as pre-war. From consideration of the subject plants in researches of plant protection, it is shown that a great many researches on protection of rice plant have been done and occupy 37 percent of plant protection researches since 1900. And also researches on protection of fruit-trees and cash-crops are not so many as those of rice plant but have been done in noticeable numbers. In fact, researches on protection of fruit-trees and cashcrops were the most important subjects of plant protection researches in pre-war while those of rice plant were the most important subjects after 1930, particulary in post-war. From consideration of contents of plant protection researches, it is said that more fundamental researches than applied ones such as practical control methods of diseases, insect pests and weeds were done in pre-war while more applied researches than fundamental ones were done in post-war, Among applied researches, those of chemical control were the most important subjects. Researches on disease and insect-pest resistance have been done in both pre-war and post-war while researches on forecasting of disease and insect-pest and race of plant pathogens have been done in post-war. And also researches on weed control mainly have been done after 1960. Researches on agricultural chemicals for control of diseases, insect pests and weeds still belong to a new field which must be expected in future, and there is nothing to notice with the exception of practical application of agricultural chemicals introduced from foreign countries. Some of important researches on diseases and insect pests were discussed in relation to developmental process of plant protection science in Korea since 1900. In future, researches on plant protection will be develop to the direction supporting importance of integrated control for plant protection. Therefore, it is pointed out that security of highly educated and trained scientists with enlargement of reseach fields of plant protection science are necessary and role of agricultural colleges for future development of the science must be emphasized.

  • PDF

Effect of Low Temperature Treatment of Seed Bulb and Planting Date on Plant Growth and Yield in Garlic (마늘의 파종기별(播種期別) 저온처리(低溫處理)의 차이(差異)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Seong Lyon;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.49-69
    • /
    • 1988
  • In order to develop a cropping system that can produce garlic in the period of short supply from March to April, effects of low temperature treatment of seed bulbs and planting dates, starting date of low temperature treatment, days of low temperature treatment on plant growth, maturity and yield were studied in Southern strain, 'Namhae' and in Northern strain, 'Euiseong' of garlic (Allium sativum). The results obtained were as follows. In Sorthern strain, sprouting was significantly enhanced by low temperature treatment only in Sep. 14, and Sep. 29 plantings. Days to sprout were least in 30 days of low temperature treatment of Sep. 14 planting and in 45 days treatment of Sep. 29 planting. When considering on the beginning date of low temperature treatment, a marked difference was observed between treatments started before July 31 and after Aug. 15. Sprouting was most enhanced in 45 days low temperature treatment of Aug. 15 and Aug. 30 plantings. In Northern strain, sprouting was en hanced by low temperature treatment in planting from Sep. 29 to Nov. 13 and low temperature treatment for 60 days was most effective. Effect of low temperature treatment on early plant growth was observed in Sep. 14 and Sep. 29 plantings, but the effect on plant growth at intermediate stage or thereafter was observed in up to Oct. 29 plantings. Optimun days for low temperature treatment on growth enhancement was 45 and 60 days in Southern strain and 60 days in Northern strain in each planting dates. In Southern strain, the longer the low temperature treatment and the later the planting date the less the number of leaves developed. In Northern strain, normal leaves were not developed in plantings from Sep. 14 to Nov. 13. In Southern strain, clove differentiation and bulbing were earlist in 45 and 60 days treatment of Sep. 14, Sep. 29, and Oct. 14 planting initiated on July 31 and Aug. 15. In Northern strain, clove differentiation and bulbing were earlist in 60 days treatment of Oct. 14 planting initiated on Aug. 15 and Aug. 30. In treatment initiated later than above, longer the low temperature treatment the earlier the clove differentiation and bulbing in both Southern and Northern strains. The earlier the initiation date and the longer of low temperature treatment, the earlier bolting in southern strain. In Northern strain, bolting was most enhanced in 45 and 60 days of low temperature treatment initiated on Aug. 15 and Aug. 30. The longer the low temperature treatment in plantings thereafter, the earlier the bolting. The earlier the planting date garlic bulbs. Harvest date was earliest in 45 and 60 days low temperature treatment started from July 31 to Aug. 30 in Southern strain, and it was in 60 and 90 days low temperature treatment initiated from July 31 to Aug. 30 in Northern strain. Bulb weight was heaviest in 45 days low temperature treatment of Oct. 14 planting and next was in 45 days treatment of Sep. 29 planting in Southern strain. In Northern strain, bulb weight was heaviest in 60 days treatment of Oct. 14 planting and next was in 45 days treatment of Oct. 14 planting. When considered in the aspect of the beginning date of low temperature treatment, bulb weight was heaviest in 45 days treatment started on Aug. 30 in Southern strain and in 60 days treatment started on Aug. 15 in Northern strain. A high negative correlation between days to harvest and plant height on January 12, and a high positive correlation between days to harvest and days clove differentiation were observed. This indicates that enhanced plant growth and clove differentiation induced by low temperature treatment advanced the harvest date. A high negative correlation between bulb weight and days to clove differentiation, days to harvest suggests that the enhanced clove differentiation result and in heavier bulb weight. From the above results, it suggested that early crop of garlic can be harvested by planting at the period of Sep. 29 to Oct. 14 after 45 days of low temperature treatment of seed bulbs of Southern strain. Then harvest date can be shortened by 30 days compared to control and garlic can be harvested in early April.

  • PDF