• 제목/요약/키워드: Springback Parameter

검색결과 14건 처리시간 0.019초

고강도강 프런트 사이드멤버의 응력분포 최적화를 통한 스프링백 저감 (Stress-Based Springback Reduction of an AHSS Front Side Member)

  • 송정한;김세호;박성호;허훈
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.295-303
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation The optimization method adopts the response surface method in order to seek for the optimum condition of process parameters such as the blank holding force and the draw-bead force. The present scheme is applied to design of the variable blank holding force in an U-draw bending process and the application is further extend ε d to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구 (Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel)

  • 김병규;이인석;금영탁
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

고강도강 프런트 사이드멤버의 음력분포 최적화를 통한 스프링백 저감 (Stress-Based Springback Reduction of an AHSS Front Side Member)

  • 송정한;김세호;허훈;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.61-67
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation. The optimization method adopts the response surface method in order to seek for the optimum condition of the draw-bead force. The present scheme is applied to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

  • PDF

원통형 다이를 이용한 굽힘의 변형특성에 관한 연구 (A Study on Characteristics of Bending Deformation in Cylindrical Die)

  • 김용우;이대수
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.59-66
    • /
    • 2008
  • This paper has proposed a new parameter to interpret the effects of plastic deformation in bending of strips in cylindrical die and punch. With reference to the parameter, we have provided an insight on the separation between strips and punches, the occurrence of the multi-point bending during the process of deformation, the final shapes of strips, and the springback ratios. Also using the parameter, we have considered the different effects between the bending deformation in the cylindrical die and the bending deformation due to pure bending.

프로그레시브 메타모델을 이용한 3세대 초고장력강판 적용 차체 부품의 스프링백 예측 방법론 (Methodology of Springback Prediction of Automotive Parts Applied 3rd Generation AHSS Using the Progressive Meta Model)

  • 윤재익;오규환;이석렬;유지홍;김태정
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.241-250
    • /
    • 2020
  • In this study, the methodology of the springback prediction of automotive parts applied 3rd generation AHSS was investigated using the response surface model analysis based on a regression model, and the meta model analysis based on a Kriging model. To design the learning data set for constructing the springback prediction models, and the experimental design was conducted at three levels for each processing variable using the definitive screening designs method. The hat-shaped member, which is the basic shape of the member parts, was selected and the springback values were measured for each processing type and processing variable using the finite element analysis. When the nonlinearity of the variables is small during the hat-shaped member forming, the response surface model and the meta model can provide the same processing parameter. However, the accuracy of the springback prediction of the meta model is better than the response surface model. Even in the case of the simple shape parts forming, the springback prediction accuracy of the meta model is better than that of the response surface model, when more variables are considered and the nonlinearity effect of the variables is large. The efficient global optimization algorithm-based Kriging is appropriate in resolving the high computational complexity optimization problems such as developing automotive parts.

유한요소법을 이용한 박판 플랜지 형상 예측 (Prediction of Springback Shape in the Flange Forming)

  • 김윤태;이상욱;전중환;임희천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.86-91
    • /
    • 2005
  • The stack, the core unit of the MCFC system, is composed of the three main parts which are the electrodes, the matrix keeping the electrolyte and the separator. Among these, the separator made of low carbon steel is manufactured by some sheet metal forming processes. The flatness of flange of the mask plate of the separator is crucial not only to enhance the stack performance but also to reduce the production cost. This study has focused on the enhancement of flatness of the mask plate flange by controlling some process parameters like the punch and die comer radii, the blank holding force, the friction coefficient and so on. The springback phenomenon occurring in the flange drawing process has been studied first using the finite element method (FEM) in order to understand what causes the springback. The distribution pattern of local longitudinal stress in the flanged part has been revealed very important in predicting the final shape of the flange. This fact has been backed up by the experimental results carried out with the developed test dies.

  • PDF

L-벤딩에서 공정 설계변수가 스프링백에 미치는 영향의 평가를 위한 유한요소해석 및 검증 (Finite Element Analysis and Its Verification of Springback in L-bending to Evaluate the Effect of Process Design Parameters)

  • 조민진;김수진;전만수
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.275-283
    • /
    • 2021
  • A parametric study was conducted on the effects of five fundamental design parameters on springback, including die clearance, step height, step width, punch radius, and taper relief in an L-bending process, controlled by the compression force. The experiment was also conducted to verify the usefulness of the parametric study procedure for process design, as well as the finite element predictions. The elastoplastic finite element method was utilized. The L-bending process of the york product, which is a key part of the breaker mechanism, was employed. The deformation of the material was assumed to be due to plane strain. Five samples of each design parameter were selected based on experiences in terms of process design. The finite element predictions were analyzed in detail to show a shortcut towards the process design improvement which can replace the traditional process design procedure relying on trial-and-errors. The improved process design was verified to meet all the requirements and the predictions and experiments were in good agreement.

유한요소법을 이용한 하이드로포밍 알루미늄 범퍼빔의 성형공정 최적화 (Optimization of the Hydro-Forming Process for Aluminum Bumper Beams by Using Finite Element Analysis)

  • 손원식;염상혁;이지훈;김승모
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.410-417
    • /
    • 2017
  • Hydro-forming is being employed increasingly to realize lightweight vehicular parts. The bumper beam produced by this process weighs 30% less than the conventional products with equal stiffness. However, hydro-forming involves complex parameters to obtain the target geometry and low residual stress. Parametric studies are conducted using finite element analysis to obtain optimized process conditions. Through these numerical approaches, the internal and holding pressures and feeder forward stroke along the extruded direction are optimized to achieve low residual stress and to minimize springback. The numerical results are verified by experimental observations made by employing a three-dimensional laser scanner. The numerical and experimental results are compared in terms of the springback. Both results show similar tendencies.

비틀림 진동감쇠기용 슬리브 스프링의 제조 공정 해석 (A Process Analysis for Manufacturing the Sleeve Spring of the Torsional Vibration Damper)

  • 황범철;배원병;김철
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.94-101
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, 2-roll bending process was proposed to manufacture sleeve spring; The program to calculate the initial radius including springback effect was developed and the FEA method to analyze elasto-plastic problem was verified through analysis of 90 degree bending process. The elasto-plastic analysis of 2-roll bending process was carried out by the FEA method verified to set a new criterion, and the new process design parameter(contact angle) in the 2-roll bending process was proposed.