• Title/Summary/Keyword: Spring drought

Search Result 112, Processing Time 0.026 seconds

Impact Assessment of Climate Change on Drought Risk (기후변화가 가뭄 위험성에 미치는 영향 평가)

  • Kim, Byung-Sik;Kwon, Hyun-Han;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • A chronic drought stress has been imposed during non-rainy season(from winter to spring) since 1990s. We faced the most significant water crisis in 2001, and the drought was characterized by sultry weather and severe drought on a national scale. It has been widely acknowledged that the drought related damage is 2-3 times serious than floods. In the list of the world's largest natural disaster compiled by NOAA, 4 of the top 5 disasters are droughts. And according to the analysis from the NDMC report, the drought has the highest annual average damage among all the disasters. There was a very serious impact on the economic such as rising consumer price during the 2001 spring drought in Korea. There has been flood prevention measures implemented at national-level but for mitigation of droughts, there are only plans aimed at emergency (short-term) restoration rather than the comprehensive preventive measures. In addition, there is a lack of a clear set of indicators to express drought situation objectively, and therefore it is important and urgent to begin a systematic study. In this study, a nonstationary downscaling model using RCM based climate change scenario was first applied to simulate precipitation, and the simulated precipitation data was used to derive Standardized Precipitation Index (SPI). The SPI under climate change was used to evaluate the spatio-temporal variability of drought through principal component analysis at three different time scales which are 2015, 2045 and 2075. It was found that spatio-temporal variability is likely to modulate with climate change.

Probabilistic Evaluation of the Effect of Drought on Water Temperature in Major Stream Sections of the Nakdong River Basin (낙동강 유역 주요하천 구간에서 가뭄이 수온에 미치는 영향의 확률론적인 평가)

  • Seo, Jiyu;Won, Jeongeun;Lee, Hosun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.369-380
    • /
    • 2021
  • In this work, we analyzed the effects of drought on the water temperature (WT) of Nakdong river basin major river sections using Standardized Precipitation Index (SPI) and WT data. The analysis was carried out on a seasonal basis. After calculating the optimal time scale of the SPI through the correlation between the SPI and WT data, we used the copula theory to model the joint probability distribution between the WT and SPI on the optimal time scale. During spring and fall, the possibility of environmental drought caused by high WT increased in most of the river sections. Notably, in summer, the possibility of environmental drought caused by high WT increased in all river sections. On the other hand, in winter, the possibility of environmental drought caused by low WT increased in most river sections. From the risk map, which quantified the sensitivity of WT to the risk of environmental drought, the river sections Nakbon C, Namgang E, and Nakbon K showed increased stress in the water ecosystem due to high WT when drought occurred in summer. When drought occurred in winter, an increased water ecosystem stress caused by falling WT was observed in the river sections Gilan A, Yongjeon A, Nakbon F, Hwanggang B, Nakbon I, Nakbon J, Nakbon K, Nakbon L, and Nakbon M. The methodology developed in this study will be used in the future to quantify the effects of drought on water quality as well as WT.

Analysis on the Spatio-Temporal Distribution of Drought using Potential Drought Hazard Map (가뭄우심도를 활용한 가뭄의 시공간적 분포특성분석)

  • Lee, Joo Heon;Cho, Kyeong Joon;Kim, Chang Joo;Park, Min Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.983-995
    • /
    • 2012
  • In this study, it was intended to analyze the spatio-temporal distribution of historical drought events occurred in Korea by way of drought frequency analysis using SPI (Standardized Precipitation Index), and Drought spell was executed to estimate drought frequency as per drought severity and regions. Also, SDF (severity-duration-frequency) curves were prepared per each weather stations to estimate spatial distribution characteristics for the severe drought areas of Korea, and Potential Drought Hazard Map was prepared based on the derived SDF curves. Drought frequency analysis per drought stage revealed that severe drought as well as extreme drought frequency were prominently high at Geum River, Nakdong River, and Seomjin River basin as can be seen from SDF curves, and drought severity was found as severer per each drought return period in the data located at Geum River, Nakdong River, and Seomjin River basins as compared with that of Seoul weather station at Han River basin. In the Potential Drought Hazard Map, it showed that Geum River, Seomjin River, and Yeongsan River basins were drought vulnerable areas as compared to upper streams of Nakdong River basin and Han River basin, and showed similar result in drought frequency per drought stage. Drought was occurred frequently during spring seasons with tendency of frequent short drought spell as indicated in Potential Drought Hazard Map of different season.

Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (II) Drought (원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가: (II) 가뭄)

  • Shin, Yongchul;Choi, Kyung-Sook;Jung, Younghun;Yang, Jae E.;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • Based on the soil moisture data assimilation suggested in the first paper (I), we estimated root zone soil moisture and evaluated drought severity using remotely sensed (RS) data. We tested the impacts of various spatial resolutions on soil moisture variations, and the model outputs showed that resolutions of more than 2-3 km resulted in over-/under-estimation of soil moisture values. Thus, we derived the 2 km resolution-scaled soil moisture dynamics and assessed the drought severity at the study sites (Chungmi-cheon sites 1 and 2) based on the estimated soil/root parameters and weather forcings. The drought indices at the sites were affected mainly by precipitation during the spring season, while both the precipitation and land surface characteristics influence the spatial distribution of drought during the rainy season. Also, the drought severity showed a periodic cycle, but additional research on drought cycles should be conducted using long-term historical data. Our proposed approach enabled estimation of daily root zone soil moisture dynamics and evaluation of drought severity at various spatial scales using MODIS data. Thus, this approach will facilitate efficient management of water resources.

Evaluation of the past and future droughts using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the western region of Chungnam Province (SPI와 EDI를 이용한 충남 서부지역 과거와 미래 가뭄 평가)

  • An, Hyowon;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.14-27
    • /
    • 2020
  • The drought has occurred from the past, and has caused a lot of damage. It is important to analyze the past droughts and predict them in the future. In this study, the temperature and precipitation of the past and the future from climate change RCP 4.5 and 8.5 scenarios were analyzed for Seosan and Boryeong in the western region of Chungnam Province, which is considered as a drought-prone area on the Korean Peninsula. Comparing Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) based on the past droughts, EDI was verified to be more suitable for the drought assessment. According to RCP 4.5, the frequency and intensity of droughts in the early future (2021~2060) were expected to increase and to be stronger. Particularly, severe droughts were predicted for a long time from 2022 to 2026, and from 2032 to 2039. Droughts were expected to decrease in the late future (2061~2100). From RCP 8.5, drought occurrences were predicted to increase, but the intensity of the droughts were expected to decrease in the future. As a result of evaluation of the frequencies of droughts by seasons, the region would be most affected by fall drought in the early future and by spring drought in the late future according to RCP 4.5. In the case of RCP 8.5, the seasonal effects were not clearly distinguished. These results suggest that droughts in the future do not have any tendency, but continue to occurr as in the past. Therefore, the measures and efforts to secure water resources and reinforcement of water supply facilities should be prepared to cope with droughts.

Evaluating Impact Factors of Forest Fire Occurrences in Gangwon Province Using PLS-SEM: A Focus on Drought and Meteorological Factors (PLS-SEM을 이용한 강원도 산불 발생의 영향 요인 평가 : 가뭄 및 기상학적 요인을 중심으로)

  • Yoo, Jiyoung;Han, Jeongwoo;Kim, Dongwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.209-217
    • /
    • 2021
  • Although forest fires are more often triggered by artificial causes than by natural causes, the combustion conditions that spread forest fire damage over a large area are affected by natural phenomena. Therefore, using partial least squares structural equation modeling (PLS-SEM), which can analyze the dependent and causal relationships between various factors, this study evaluated the causal relationships and relative influences between forest fire, weather, and drought, taking Gangwon Province as our sample region. The results indicated that the impact of drought on forest fires was 27 % and that of the weather was 38 %. In addition, forest fires in spring accounted for about 60 % of total forest fires. This indicatesthat along with meteorological factors, the autumn and winter droughts in the previous year affected forest fires. In assessing the risk of forest fires, if severe meteorological droughts occur in autumn and winter, the probability of forest fires may increase in the spring of the following year.

Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do- (토양수분모형을 이용한 주요 밭작물의 미래 가뭄 전망 -전라남도 지역을 중심으로-)

  • Hong, Eun-Mi;Nam, Won-Ho;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.65-76
    • /
    • 2015
  • Estimating water requirements for upland crops are characterized by standing soil moisture condition during the entire crop growth period. However, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. Changes in rainfall patterns due to climate change have significant influence on the increasing the occurrence of extreme soil moisture depletion. Therefore, it is necessary to evaluate agricultural drought for upland crop water planning and management in the context of climate change. The objective of this study is to predict the impacts of climate change on agricultural drought for upland crops and changes in the temporal trends of drought characteristics. First, the changes in crop evapotranspiration and soil moisture in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were analyzed by applying the soil moisture model from commonly available crop and soil characteristics and climate data, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions.

Projection and Analysis of Drought according to Future Climate and Hydrological Information in Korea (미래 기후·수문 정보에 따른 국내 가뭄의 전망 및 분석)

  • Sohn, Kyung Hwan;Bae, Deg Hyo;Ahn, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.71-82
    • /
    • 2014
  • The objective of this study is to project and analyze drought conditions using future climate and hydrology information over South Korea. This study used three Global Climate Models (GCMs) and three hydrological models considering the uncertainty of future scenario. Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI) and Standardized Soil moisture Index (SSI) classified as meteorological, hydrological and agricultural droughts were estimated from the precipitation, runoff and soil moisture. The Mann-Kendall test showed high increase in future drought trend during spring and winter seasons, and the drought frequency of SRI and SSI is expected higher than that of SPI. These results show the high impact of climate change on hydrological and agriculture drought compared to meteorological drought.

Development of Satellite-based Drought Indices for Assessing Wildfire Risk (산불발생위험 추정을 위한 위성기반 가뭄지수 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Lee, Jaese;Lee, Byungdoo;Kwon, ChunGeun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1285-1298
    • /
    • 2019
  • Drought is one of the factors that can cause wildfires. Drought is related to not only the occurrence of wildfires but also their frequency, extent and severity. In South Korea, most wildfires occur in dry seasons (i.e. spring and autumn), which are highly correlated to drought events. In this study, we examined the relationship between wildfire occurrence and drought factors, and developed satellite-based new drought indices for assessing wildfire risk over South Korea. Drought factors used in this study were high-resolution downscaled soil moisture, Normalized Different Water Index (NDWI), Normalized Multi-band Drought Index (NMDI), Normalized Different Drought Index (NDDI), Temperature Condition Index (TCI), Precipitation Condition Index (PCI) and Vegetation Condition Index (VCI). Drought indices were then proposed through weighted linear combination and one-class support vector machine (One-class SVM) using the drought factors. We found that most drought factors, in particular, soil moisture, NDWI, and PCI were linked well to wildfire occurrence. The validation results using wildfire cases in 2018 showed that all five linear combinations produced consistently good performance (> 88% in occurrence match). In particular, the combination of soil moisture and NDWI, and the combination of soil moisture, NDWI, and precipitation were found to be appropriate for representing wildfire risk.

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.