• Title/Summary/Keyword: Spring drought

Search Result 112, Processing Time 0.031 seconds

ASSESSMENT OF SPRING DROUGHT USING MODIS VEGETATION INDEX AND LAND SURFACE WATER INDEX

  • Park, Jung-Sool;Kim, Kyung-Tak;Lee, Kyo-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.563-566
    • /
    • 2006
  • In order for the evaluation and analysis of the spring drought which has been periodically occurring in Korean peninsula since 2000, the use of satellite image data is increasing to investigate temporal and spatial characteristics of the drought areas. The recent spring droughts in south Korea have some characteristics. It last for short period in spring when the activity of vegetation is not lively and it have large areal deviation in the severity of drought. In this study, considering the characteristics of the spring drought in Korean peninsular, the MODIS satellite image data which has superior spatial and radiometric resolutions was used for the analysis of the spring drought. In two basins having different spatial characteristics, the drought events were selected and their severities were analyzed using the MODIS NDVI, LSWI, and daily rainfall data since 2000, and the spatial characteristics of the drought area were analyzed using the DEM, land cover, and digital forest map of the study areas.

  • PDF

SPRING DROUGHT MONITORING USING NDVI-BASED VCI AND SVI

  • Park, Jung-Sool;Kim, Kyung-Tak
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.552-555
    • /
    • 2007
  • In this study, the MODIS NDVI for the period of $2000{\sim}2007$ was collected and processed to obtain VCI and SVI which are the quantitative indexes of drought. The VCI and SVI based on NDVI can be used for understanding seasonal pattern of vegetation, drought identification and quantitative analysis of drought. VCI and SVI compared with monthly precipitation ratio to average, Standardized Precipitation Index(SPI), and etc., which are used to identify spring drought, to analyze drought region, similarity and difference in drought severity. In addition, frequency of Spring droughts were calculated for the period of $2000{\sim}2007$, and the usability of the MODIS images as a tool for establishing countermeasures against drought was presented by analyzing drought frequently areas.

  • PDF

Analysis of 2012 Spring Drought Using Meteorological and Hydrological Drought Indices and Satellite-based Vegetation Indices (기상 및 수문학적 가뭄지수와 위성 식생지수를 활용한 2012년 봄 가뭄 분석)

  • Ahn, So-Ra;Lee, Jun-Woo;Kim, Seong-Joon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.78-88
    • /
    • 2014
  • This study is to analyze the 2012 spring drought of Korea using drought index and satellite image. The severe spring drought recorded in May of 2012 showed 36.4% of normal rainfall(99.5mm). The areas of west part of Gyeonggi-do and Chungcheong-do were particularly serious. The drought indices both the SPI(Standardized Precipitation Index) and WADI(WAter supply Drought Index) represented the drought areas from the end of May and to the severe drought at the end of June. The drought by SPI completely ended at the middle of July, but the drought by WADI continued severe drought in the agricultural reservoir watersheds of whole country even to the end of the July. On the other hand, the results by spatial NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index) data from Terra MODIS, both indices showed relatively low values around the areas of Sinuiju, Pyongyang, and west coast of North Korea and Gyeonggi-do and Chungcheong-do of South Korea indicating drought condition. Especially, the values of NDVI and EVI at Chungcheong-do were critically low in June compared to the normal year value.

  • PDF

ANALYSIS OF DROUGHT PHENOMENA USING MODIS NORMALIZED DIFFERENCE VEGETATION INDEX AND LAND SURFACE TEMPERATURE PRODUCTS

  • Park Jung-Sool;Kim Kyung-Tak;Lee Kyo-Sung;Kim Joo-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.193-196
    • /
    • 2005
  • As global warming proceeds, South Eastern Asia is undergoing drought, and the harshness of drought in the middle area of Korea is increasing. Especially, there has been the worst spring drought in 2001 since the first meteorological observation, and the damages caused by that drought are being ana lysed in various ways. In this study, spectral indices derived from satellites are used to examine 2001 spring drought, and the application of MODIS Data products as the quantitative tool to analyse drought in the future is examined.

  • PDF

Drought Forecasting with Regionalization of Climate Variables and Generalized Linear Model

  • Yejin Kong;Taesam Lee;Joo-Heon Lee;Sejeong Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.249-249
    • /
    • 2023
  • Spring drought forecasting in South Korea is essential due to the sknewness of rainfall which could lead to water shortage especially in spring when managed without prediction. Therefore, drought forecasting over South Korea was performed in the current study by thoroughly searching appropriate predictors from the lagged global climate variable, mean sea level pressure(MSLP), specifically in winter season for forecasting time lag. The target predictand defined as accumulated spring precipitation(ASP) was driven by the median of 93 weather stations in South Korea. Then, it was found that a number of points of the MSLP data were significantly cross-correlated with the ASP, and the points with high correlation were regionally grouped. The grouped variables with three regions: the Arctic Ocean (R1), South Pacific (R2), and South Africa (R3) were determined. The generalized linear model(GLM) was further applied for skewed marginal distribution in drought prediction. It was shown that the applied GLM presents reasonable performance in forecasting ASP. The results concluded that the presented regionalization of the climate variable, MSLP can be a good alternative in forecasting spring drought.

  • PDF

A Study of Drought Susceptibility on Cropland Using Landsat ETM+ Imagery (Landsat ETM+ 영상을 활용한 경작지역내 가뭄민감도의 연구)

  • 박은주;성정창;황철수
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • This research investigated the 2001 spring drought on croplands in South Korea using satellite imagery. South Korea has suffered from spring droughts almost every year. Meteorological indices have been used for monitoring droughts, however they don't tell the local severity of drought. Therefore, this research aimed at detecting the local, spatial pattern of drought severity at a cropland level. This research analyzed the agricultural drought using the wetness of remotely sensed pixels that affects the growth of early crops significantly in the spring. This research, specifically, analyzed the spatial distribution and severity of drought using the tasseled cap transformation and topographical factors. The wetness index from the tasseled cap transformation of Landsat 7 ETM/sub +/ imagery was very useful for detecting the 2001 spring drought susceptibility in agricultural croplands. Especially, the wetness values smaller than -0.2 were identified as the croplands that were suffering from serious water deficit. Using the water deficit pixels, drought severity was modeled finally.

Assessment of the Meteorological Characteristics and Statistical Drought Frequency for the Extreme 2017 Spring Drought Event Across South Korea (2017년 극심한 봄 가뭄의 기상학적 특성 및 통계학적 가뭄빈도해석)

  • Bang, Na-Kyoung;Nam, Won-Ho;Hong, Eun-Mi;Michael, J. Hayes;Mark, D. Svoboda
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.37-48
    • /
    • 2018
  • The extreme 2017 spring drought affected a large portion of central and western South Korea, and was one of the most climatologically driest spring seasons over the 1961-2016 period of record. This drought was characterized by exceptionally low precipitation, with total precipitation from January to June being 50% lower than the mean normal precipitation (1981-2010) over most of western South Korea. In this study, for the quantitative drought impact analysis, the widely-used Standardized Precipitation Index (SPI) and the statistical drought frequency are compared with observed meteorological characteristics and anomalies. According to the drought frequency analysis of monthly cumulative precipitation during January and May in 2017, Gyeonggi-do, Chungcheong-do, and Jeollanam-do areas showed more than drought frequency over 100 years. Gyeongsangnam-do area showed more than drought frequency over 200 years based on annual precipitation in 2017. The South Korean government (Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC)) have been operating a government-level drought monitoring system since 2016. Results from this study can be used to improve the drought monitoring applications of future drought events, as well as drought planning and preparedness in South Korea.

Use of various drought indices to analysis drought characteristics under climate change in the Doam watershed

  • Sayed Shajahan Sadiqi;Eun-Mi Hong;Won-Ho Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.178-178
    • /
    • 2023
  • Drought and flooding have historically coexisted in Korea, occurring at different times and with varying cycles and trends. The drought indicators measured were (PDSI), (SPI), and (SPEI) in order to statistically analyze the annual or periodic drought occurrence and objectively evaluate statistical characteristics such as the periodicity, tendency, and frequency of occurrence of droughts in the Doam watershed. To compute potential evapotranspiration (PET), both Thornthwaite (Thor) and Penman-Monteith (PM) parameterizations were considered, and the differences between the two PET estimators were analyzed. Hence, SPIs 3 and SPIs 6 revealed a tendency to worsen drought in the spring and winter and a tendency to alleviate drought in the summer in the study area. The seasonal variability trend did not occur in the SPIs 12 and PDSI, as it did in the drought index over a short period. As a result of the drought trend study, the drought from winter to spring gets more severe, in addition to the duration of the drought, although the periodicity of the recurrence of the drought ranged from 3 years to 6 years at the longest, indicating that SPIs 3 showed a brief time of around 1 year. SPIs 6 and SPIs 12 had a term of 4 to 6 years, and PDSI had a period of roughly 6 years. Based on the indicators of the PDSI, SPI, and SPEI, the drought severity increases under climate change conditions with the decrease in precipitation and increased water demand as a consequence of the temperature increase. Therefore, our findings show that national and practical measures are needed for both winter and spring droughts, which happen every year, as well as large-scale and extreme droughts, which happen every six years.

  • PDF

Impact of abnormal climate events on the production of Italian ryegrass as a season in Korea

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • This study aimed to assess the impact of abnormal climate events on the production of Italian ryegrass (IRG), such as autumn low-temperature, severe winter cold and spring droughts in the central inland, southern inland and southern coastal regions. Seasonal climatic variables, including temperature, precipitation, wind speed, relative humidity, and sunshine duration, were used to set the abnormal climate events using principal component analysis, and the abnormal climate events were distinguished from normal using Euclidean-distance cluster analysis. Furthermore, to estimate the impact caused by abnormal climate events, the dry matter yield (DMY) of IRG between abnormal and normal climate events was compared using a t-test with 5% significance level. As a result, the impact to the DMY of IRG by abnormal climate events in the central inland of Korea was significantly large in order of severe winter cold, spring drought, and autumn low-temperature. In the southern inland regions, severe winter cold was also the most serious abnormal event. These results indicate that the severe cold is critical to IRG in inland regions. Meanwhile, in the southern coastal regions, where severe cold weather is rare, the spring drought was the most serious abnormal climate event. In particular, since 2005, the frequency of spring droughts has tended to increase. In consideration of the trend and frequency of spring drought events, it is likely that drought becomes a NEW NORMAL during spring in Korea. This study was carried out to assess the impact of seasonal abnormal climate events on the DMY of IRG, and it can be helpful to make a guideline for its vulnerability.

Drought forecasting over South Korea based on the teleconnected global climate variables

  • Taesam Lee;Yejin Kong;Sejeong Lee;Taegyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.47-47
    • /
    • 2023
  • Drought occurs due to lack of water resources over an extended period and its intensity has been magnified globally by climate change. In recent years, drought over South Korea has also been intensed, and the prediction was inevitable for the water resource management and water industry. Therefore, drought forecasting over South Korea was performed in the current study with the following procedure. First, accumulated spring precipitation(ASP) driven by the 93 weather stations in South Korea was taken with their median. Then, correlation analysis was followed between ASP and Df4m, the differences of two pair of the global winter MSLP. The 37 Df4m variables with high correlations over 0.55 was chosen and sorted into three regions. The selected Df4m variables in the same region showed high similarity, leading the multicollinearity problem. To avoid this problem, a model that performs variable selection and model fitting at once, least absolute shrinkage and selection operator(LASSO) was applied. The LASSO model selected 5 variables which showed a good agreement of the predicted with the observed value, R2=0.72. Other models such as multiple linear regression model and ElasticNet were also performed, but did not present a performance as good as LASSO. Therefore, LASSO model can be an appropriate model to forecast spring drought over South Korea and can be used to mange water resources efficiently.

  • PDF