• Title/Summary/Keyword: Spring Waters

Search Result 301, Processing Time 0.029 seconds

Distribution of Indicator bacteria in Spring Water in Seoul (서울시내 옹달샘물의 지표미생물 분포현황)

  • 류승희;박석기
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.55-60
    • /
    • 2002
  • In order to investigate the microbiological contamination of spring water, we performed the standard plate count, coliform and psychrotrophilic bacteria in 109 spring waters in Seoul. Of 109 spring waters, geometirc mean standard plate count was 0.19 CFU/ml, and the highest in Mt. Boolam, 4..43 CFU/ml and Mt. Dobong, 3.86 CFU/ml, but not detected in Mt. Woomyun and Mt. Cheonggye. Four spring waters have shown over 100 CFU/ml in standard plate count. The geometric mean psychrotrophilic bacteria was 49.2 CFU/ml, the most prevalent spring water was Mt. Nam, 125 CFU/ml, the lowest Mt. Woomyeun. Among a total of 109, coliform was detected from 21 spring waters(19.3%) and the geometric mean of coliform was 0.005 MPN/100ml. The isolated genera of coliform were 7 isolates of E. coli(33%), 5 Klebsiella(24%), 4 Enterobacter(19%), 3 Citrobacter(14%) and 2 Serratia(10%), respectively. The 22 spring waters(20.2%) failed to meet the standard limits of drinking water based on regulation in Korea. The inappropriate rate of standard plate count in spring water was 4.5%, that of coliform was 81.1% and both of them was 13.6%. There was the significant correlation between standard plate count and psychrotrophilic bacteria in spring water(r=0.95, p<0.01).

Hydrogeochemical, Stable and Noble Gas Isotopic Studies of Hot Spring Waters and Cold Groundwaters in the Seokmodo Hot Spring Area of the Ganghwa Province, South Korea (강화 석모도 지역 온천수와 지하수의 수리지구화학 및 동위원소 연구)

  • Kim, Kyu-Han;Jeong, Yun-Jeong;Jeong, Chan-Ho;Keisuke, Nagao
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.15-32
    • /
    • 2008
  • The hydrochemical and isotopic (stable isotopes and noble gas isotopes) analyses for hot spring waters, cold groundwaters and surface water samples from the Seokmodo hot spring area of the Ganghwa province were carried out to characterize the hydrogeochemical characteristics of thermal waters and to interpret the source of thermal water and noble gases and the geochemical evolution of hot spring waters in the Seokmodo geothermal system. The hot spring waters and groundwaters show a weakly acidic condition with the pH values ranging from 6.42 to 6.77 and 6.01 to 7.71 respectively. The outflow temperature of the Seokmodo hot spring waters ranges from $43.3^{\circ}C\;to\;68.6^{\circ}C$. Relatively high values of the electrical conductivities which fall between 60,200 and $84,300{\mu}S/cm$ indicate that the hot spring waters were mixed with seawater in the subsurface geothermal system. The chemical compositions of the Seokmodo hot spring waters are characterized by Na-Ca-Cl water type. On the other hand, cold groundwaters and surface waters can be grouped into three types such as the Na(Ca)-$HCO_3$, Na(Ca)-$SO_4$ and Ca-$HCO_3$ types. The ${\delta}^{18}O\;and\;{\delta}D$ values of hot spring waters vary from -4.41 to -4.47%o and -32.0 to -33.5%o, respectively. Cold groundwaters range from -7.07 to -8.55%o in ${\delta}^{18}O$ and from -50.24 to -59.6%o in ${\delta}D$. The oxygen and hydrogen isotopic data indicate that the hot spring waters were originated from the local meteoric water source. The enrichments of heavy isotopes ($^{18}O\;and\;^2H$) in the Seokmodo hot spring waters imply that the thermal water was derived from the diffusion Bone between fresh and salt waters. The ${\delta}^{34}S$ values ranging from 23.1 to 23.5%o of dissolved sulfate are very close to the value of sea water sulfate of ${\delta}^{34}$S=20.2%o in this area, indicating the origin of sulfate in hot springs from sea water. The $^3H/^4He$ ratio of hot spring waters varies from $1.243{\times}10^{-6}\;to\;1.299{\times}10^{-6}cm^3STP/g$, which suggests that He gas in hot spring waters was partly originated from a mantle source. Argon isotopic ratio $(^{40}Ar/^{36}Ar=298{\times}10^{-6}cm^3STP/g)$ in hot spring waters corresponds to the atmospheric value.

Hydrochemical Properties of the Onyang Hot Spring Waters (온양지역 온천수의 수리화학적 특성)

  • Yun, Uk;Cho, Byong Wook;Lee, Cholwoo
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.561-570
    • /
    • 2016
  • For the investigation of hydrochemical changes in hot spring waters from the Onyang hot spring area, we analyzed water chemistry of 24 hot spring waters in 2011 and 2016. The results showed that there is no significant change in temperature and properties of the hot spring waters. The relationship of 2016 between temperature and $SiO_2$ and F reveals a positive trend ($r^2=0.60$, 0.47), and the relationship between temperature and Ca, Mg, Cl, $SO_4$, $HCO_3$, EC reveals a negative trend ($r^2=0.50$, 0.11, 0.50, 0.63, 0.23, 0.51). The relationship between temperature and pH is a positive trend, while the one between temperature and DO is a negative trend, indicating that the source is from deep groundwater. When plotted on Piper diagram, most of which are $Na-HCO_3$ but several hot waters are classified as the $Na(Ca)-HCO_3$, indicating inflow of shallow groundwater was occurred.

Diurnal Fluctuations of Saprophytic Bacterial distribution and Their Extracellular Enzyme Activities in the Overlying Waters of Sediment of the Yellow Sea near Daesan, Korea (대산인근 해역에서 간만조에 따른 종속영양세균의 일일 분포와 세포외 효소 활성력의 변화)

  • Lee, Geon-Hyoung;Gang-Guk Choi;Chun-Bong Baek
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.409-418
    • /
    • 1995
  • As a part of studying the function and structure of the mudflat environment of the Yellow Sea, seawater samples in the overlying waters of sediment near Daesan were collected every hour on March 29 (spring tides) and on April 5 (neap tides), 1995 to study the diurnal distribution of aerobic saprophytic bacteria and their extracellular enzyme activities. The diurnal distribution of aerobic saprophytic bacteria ranged from 1.0 X $10^{2}$ to 7.07 X $10^{3}$ cfu /ml at spring tides and from 1.0 X $10^{2}$ to 8.3 X $10^{3}$ cfu /ml at neap tides. The diurnal variations of aerobic saprophytes at the suface waters were greater than those of middle and bottom waters. However, th diurnal fluctuation of saprophyte numbers at spring tides showed no significant difference compared with that at neap tides. The numbers of three physiological groups of aerobic hacteria (proteolytic, lipolytic and amylolytic bacteria) at the surface waters during spring and neap tides were lower than those at the middles and bottom waters. The diurnal variations of five extracellular enzyme activities at the surface waters during the survey period showed lower values than those at the middle and botton waters. Among the measured extracellular enzyme activities, phosphatase showed the highest. However, the activities of amylase, chitinase and cellulase showed a similar tendency.

  • PDF

Detection of Coliform and Escherichia coli in Spring Water by Polymerase Chain Reaction (PCR법을 이용한 옹달샘물의 대장균군 및 대장균 검출)

  • 류승희;박석기
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.193-202
    • /
    • 2002
  • The polymerase chain reaction(PCR) of target lacZ and uidA genes were used to detect total coliform and Escherichia coli for determining water quality, respectively. Of 109 spring waters, coliform were detected from 38 spring waters by lacZ PCR method but 21 spring waters by culture method accepted by the Ministry of Environment for water quality monitoring. The lacz PCR method gave the results statistically equivalent to those of the culture method(kappa=0.62, McNemar=17.00). The uidA PCR method gave the same results to those of the culture method. The sensitivity and specificity of coliform and E. coli by PCR method were 100% and 80.7%, respectively. Therefore, PCR can be used for the rapid identification of Escherichia coli and coliform in potable water using uidA and lacZ.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Hydrochemical and Isotopic Properties of the Thermal Spring Water from Chonju Jukrim District, Korea (전주 죽림지역 온천수의 화학적 및 동위원소적 특성)

  • Na, Choon-Ki;Lee, Mu-Seong;Lee, In-Sung;Park, Hee-Youl;Kim, Oak-Bae
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1997
  • The purpose of this study is to examine the feasibility of using stable isotopes as a hydrologic tracer, and to elucidate the groundwater circulation system and the source of S component dissolved in thermal water of the Chonju Jukrim thermal spring district based on the O, H and S isotopic variabilities of environmental materials including bedrock, rainwater, surface water, shallow subsurface water and thermal spring water. The ${\delta}^{18}O$ and ${\delta}D$ of subsurface waters and surface water show highly restricted range and plotted on the same meteoric water line as a ${\delta}D=8{\delta}^{18}O+19$ line, and derivate from the mean annual isotopic composition of the rain water but are analogous to those of rain waters precipitated during winter season, indicating that ground waters are originated from the meteoric water and are strongly affected by the seasonal variation of air mass. Thermal spring waters are more depleted in ${\delta}^{18}O$ and ${\delta}D$ than those of shallow ground water and surface water. It can be explained by the difference of recharge area. The hydrochemical properties of subsurface waters and surface water devide into two groups: $Ca(HCO_3)_2$ type including shallow subsurface water and surface water, and $Na(HCO_3)$ type of thermal spring waters. The ${\delta}^{34}S$ values of thermal spring water show very high positive and quitely distinct from those of shallow subsurface water and surface water that are similar to those of bed rocks, indicating that sulfate dissolved in thermal spring water has not only a terrigenic origin, but also originates partially from the foreign source containing very heavy ${\delta}^{34}S$ component such as an ancient sea water. However, the presence of $H_2S$ can not be ignore the affact of the isotopic fractionation to explaine the heavy ${\delta}^{34}S$ of thermal spring water. Overall, the Oxygen and Hydrogen stable isotopes can identify the source and the circulation system of the natural waters and the S-isotopes can provide a crucial clue on tracing the dissolved material transports in the circulation system of the natural water.

  • PDF

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.

Spatial Distribution of the Physicochemical Characteristics of Spring Waters in Mt. Geumjung (금정산 용천수의 물리화학적 성질의 공간적 분포 특성)

  • 김문수;함세영;김광성;김성이;성익환;이병대
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.262-265
    • /
    • 2000
  • In order to estimate spatial physicochemical properties of the spring waters in the study area, spring waters at 57 sites were investigated for measuring ten items (temperature, pH, Eh, EC, TDS, DO, salinity, alkalinity, discharge rate, and surface elevation), To compare each component with one another, regression analysis was carried out. Kriging was used to estimate the spatial characteristics and continuity of data in the study area. To solve kriging equation, the semivariogram was calculated using geostatistical software GS$^{+}$(version 3.1). As a result of semivariogram analysis, the data of nine components but surface elevation could be assumed as stationary random function, and ordinary kriging method was used for making contour maps.s.

  • PDF

Characteristics of Mineral and Thermal Waters in South Korea (한국 온천수의 수질적 특성(I))

  • 임정웅
    • Journal of the Korean Professional Engineers Association
    • /
    • v.32 no.6
    • /
    • pp.60-67
    • /
    • 1999
  • 299 chemical analyses are used to study the characteristics of mineral and thermal waters in South Korea. Even though the concentration of chemical components in thermal waters are generally very low, mineral waters having components more than 1,000 ppm of dissolved total solid(TDS) are reached up to 19% total analyses data, In Germany, Japan or some other countries, mineral and thermal waters are detined not only by water temperature, but also by chemical components. The principle of Law in Japan in also almost same with the German regulations. However, the Law for thermal spring In Korea permit thermal water to be qualifiled only by water temperature. For including chemical characters into the regulations or Law of thermal spring, the limit values of TDS and other 9 micro components related to mineral and thermal waters was selected through this study.