• Title/Summary/Keyword: Spring Parameter

Search Result 300, Processing Time 0.042 seconds

A Basic Study of High Frequency Rattling Noise (고주파 래틀링 소음의 기초 연구)

  • 이금정;박철희;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.88-93
    • /
    • 1998
  • Since rattling noise, which occur in mechanical linkage with free play or glove boxes in passenger cars, play an important role in the generation of industrial noise and vibration, it is interest to study these dynamics. A difference equations are derived which described the motions of a mass constrained by pre-compressed spring and forced by a high frequency base excitation. Two types of saddle are founded from these difference equations and the stable and unstable manifolds are constructed in these saddle point. For a certain region in a parameter space of exciting displacement and coefficient of restitution, transversal intersections of stable and unstable manifolds exist. Therefore it is founded that there are large families of periodic and irregular non-periodic motions in rattling system i.e. chaos motion is observed.

  • PDF

A Study on the Radiated Noise of a Shaft-Plate System By an Axial Force (축방향력에 의한 축 플레이트계의 방사소음에 관한 연구)

  • ;Grosh, Karl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.524-529
    • /
    • 1998
  • Analogous problem for a gear dynamics where helical gears excite logitudinal forces in the shaft is studied. These shaft forces excite the supporting gear housing through bearing, causing structural vibration. In this study, shaft is modeled as a rod, and bearing is modeled by a massless spring. A simple model for gear housing is a clamped circular plate. To model this force transmission, the transfer functions from the shaft to a clamped circular plate are analytically derived by using the spectral method and four-pole parameter. Finally, radiated noise is computed, using the acoustic relations due to plate surface vibration.

Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine (HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

Evaluation of rubber spring for rail vehicle and application on the floor for increasing sound insulation properties (철도차량용 방진고무의 동특성 평가 및 상구조 차음 성능 증대를 위한 적용)

  • Lee, Tae-Wook;Kim, Jong-Nyeun;Lee, Hwa-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.778-782
    • /
    • 2004
  • Floating floor structure, which is mainly adopted for reducing interior noise of railway vehicle, is known that it is superior to single wall in respect of sound transmission loss. The dynamic characteristic of the support in the floating floor that is one of the important design variables in floating floor structure can change the sound and vibration insulation properties of it. From excitation test, the dynamic stiffness and loss factor of the support are evaluated. They are used as input parameter for analyzing the sound transmission loss of floating floor. Predicted transmission loss is compared with the prototype-car test results.

  • PDF

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도응답 해석)

  • 김인학;독고욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.62-69
    • /
    • 1996
  • Most dynamic systems have various random properties in excitation and system parameters. In this paper, a procedure fur response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameter and response with random properties are modeled by perturbation technique, aand then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an application example, the transient response is calculated for a sdof system with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Performance Evaluation for Piezoelectric Unimorph Actuator with Stress Distribution (응력 분포에 따른 압전 유니모프 작동기의 성능 평가)

  • Lee, Jong-Won;Kang, Lae-Hyoung;Han, Jae-Hung;Jung, Sang-Jun;Ko, Han-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.127-131
    • /
    • 2008
  • This paper deals with the performance evaluation of piezoelectric unimorph actuator. In the unimorph design, the thickness ratio of substrate to piezoelectric material and the elastic modulus ratio of substrate to piezoelectric material are important parameters. There exists only one structural configuration that satisfies the optimal condition among them, and actuators using that configuration exhibit better actuating displacements. Another design parameter is the piezoelectric coefficient which can be improved due to the induced tensile stress and voltages. The application of the tensile stress to the piezoelectric material makes it get higher piezoelectric coefficient and the total displacement performance of the unimorph actuator is improved. Finally, the piezoelectric actuator system with spring elements is fabricated and it shows higher actuating displacement capability.

  • PDF

Impedance characteristic of human arm for cooperative robot

  • Rahman, Mozasser;Ikeura, Ryojun;Mizutani, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.85.3-85
    • /
    • 2002
  • In this study, we tried to investigate the impedance characteristic of human arm in a cooperative task. Human arm was moved in a desired trajectory. The motion was actuated by a 1 degree-of-freedom robot system. As the muscle is mechanically analogous to a spring-damper system, a second-order equation was considered as the model for arm dynamics. In the model, inertia, stiffness and damping factor were considered. The impedance parameter was estimated from the position and torque data obtained from the experiment and based on the "Estimation of Parametric Model". It was found that the inertia is almost constant over the operational time. The damping factor and stiffness were high...

  • PDF

A study on the robot controller design using a reduced-order observer (축소차수 관측기를 이용한 로보트 제어기 설계에 관한 연구)

  • 김도식;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1-6
    • /
    • 1991
  • This paper is concerned with the design of a robust tracking controller using a state observer on a robotic manipulator under the disturbance. The controller is designed to follow a step or ramp reference input without steady state error in the presence of a disturbance and a system parameter variation. In most cases, since all the state vectors are not measured, unmeasurable state vectors must be estimated or reconstructed. A reduced order observer is proposed to estimate unmeasurable state vectors of the non-linear system. Some problems are caused by the Coulomb friction, the disturbance, and the spring effect of a link between the drive motor and the manipulator arm. The state variables, directly measured and estimated by the reduced order observer, are fed back to the controller. When the robot system exhibits the 'limit cycle, the feedback gains initially obtained by optimal control theory are changed. As a result, the limit cycle is eliminated by the new controller gains,

  • PDF

Effect of the Parameter of the Suspension System on the the Vertical Vibration of the Passenger Vehicle (객차의 현가장치 변수가 상하진동에 미치는 영향)

  • Hur, Hyun-Moo;Kwon, Young-Pil;Choi, Kyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1309-1316
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the field test, Optimal condition was obtained for the stiffness ratio of the primary spring and the secondary of the suspension system. When the stiffness ratio was increased, the vibration was increased on the car body and decreased on the bogie, and ride quality are getting worse because of increase of the vertical natural frequency of the car body. The results of this study are usefull to improve the technology of the ride quality of KT-23 type vehicle.

A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension (자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구)

  • Park, Ho;Hahn, Chang-Su;Rhee, Meung-Ho;Roh, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.