• 제목/요약/키워드: Spring Motion

검색결과 494건 처리시간 0.023초

전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어 (Design and Control of a MR Shock Absorber for Electronic Control Suspension)

  • 성금길;최승복
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

초정밀 자유곡면 가공용 long stroke fast tool servo의 설계 및 특성 평가 (Design and Testing of a Long Stroke Fast Tool Servo for Ultra-precision Free-form Machining)

  • 김호상;이광일
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.35-44
    • /
    • 2009
  • Long stroke Fast Tool Servo (LFTS) with maximum stroke of $432{\mu}m$ is designed, manufactured and tested for fabrication of optical free-form surfaces. The large amount of stroke in LFTS has been realized by utilizing the hinge and lever mechanisms which enable the displacement amplification ratio of 4.3. In this mechanism the peculiar shape was devised for maximizing the displacement of end tip in LFTS and special mechanical spring has been mounted to provide the sufficient preload to the piezoelectric actuator. Also, its longitudinal motion of tool tip can be measured by capacitive type displacement sensor and closed-loop controlled to overcome the nonlinear hysteresis. In order to verify the static and dynamic characteristics of designed LFTS, several features including step response, frequency response and cut-off frequency in closed-loop mode were experimentally examined. Also, basic machining result shows that the proposed LFTS is capable of generating the optical free-form surface as an additional axis in diamond turning machine.

치과용 저작 매스티케이터의 개발 (Development of Dental Chewing Masticator)

  • 이권용;정일영;박성호;전승범
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.255-258
    • /
    • 2002
  • Dental chewing masticator, which is an essential device for evaluating the wear of dental resin and the interfacial failure between the filling resin and enamel of tooth used in conservative dentistry, was developed. This dental chewing masticator mimics the chewing motion and loading by adapting DC motor and rotary cam system. Chewing loading of 49N was imposed by computer-displacement control, loadcell, LM guide, and spring system. Extracted tooth was fixed into a holding jig, and this jig was mounted with rubber pad on the $15^{\circ}$inclined surface to consider the lateral movement of periodontal ligament. A water bath was installed for providing the environment of inside mouth and for circulating the $5^{\circ}C-55^{\circ}C$ water to evaluate the effect of hydrothermal cycling on the damage of resin filled teeth during long-term chewing activity.

  • PDF

PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구 (A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR)

  • 이종훈;이연원;김재훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF

티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구 (A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam)

  • 진종태;손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper a dynamic behavior of a simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect of the velocity of the fluid on the mid-span deflection appears more greatly.

압축기 토출벨브의 유체-구조 연계해석 및 충돌해석 (Flow Structure Interaction 3-D Reciprocating Compressor and Impact Analyses of Compressor Discharge Valve)

  • 레사 옥타비안티;김동현;박강균;정원현;안재우;문경호;고영필;김형식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.633-640
    • /
    • 2007
  • In this paper, 3-D reciprocating compressor is taken into flow-structure interaction analysis. The full cycle process consisted of cylinder expansion and compression has been modeled without considering flow leakage through cylinder wall. Fully-coupled FSI analysis of this compressor model was iteratively solved and gives sufficient result with the experimental test. The study is emphasized to thoroughly investigate discharge valve motion, opening and closing, in order to determine discharge valve region which is prone to have high effective stress. The cylinder pressure is successfully validated before conducting impact analyses between discharge valve and other susceptible supported structure. Velocity profile has been obtained in FSI analysis is used as initial condition to carry out further impact analyses. Stress result of discharge valve and valve spring gives preliminary estimation of higher stress area due to its impact phenomena.

  • PDF

슬라이딩 섭동 관측기를 이용한 에어셀과 반능동 서스펜션의 통합 제어 (Integration Control of Air-Cell Seat and Semi-active Suspension Using Sliding Perturbation Observer Design)

  • 유기성;윤정주;이민철;유완석
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.159-169
    • /
    • 2004
  • In this study, integration control of air-cell seat and semi-active suspension is proposed to minimize the road-tyre force which can cause uncomfortable feeling to rider. The proposed integration control with sliding perturbation observer is consisted of air-cell seat control which uses the force generated by air-cell and the sky-hook control. The air-cell seat itself has been modeled as a 1 degree of freedom spring-damper system. The actual characteristics of the air-cell have been analyzed through experiments. In this paper, we introduces a new robust motion control algorithm using partial state feedback for a nonlinear system with modelling uncertainties and external disturbances. The major contribution of this work is the development and design of robust observer for the state and the perturbation. The combination skyhook controller and air-cell controller using the observer improves control performance, because of the robust routine called Sliding Observer Design for Integration Control of Air-Cell Seat and Semi-active Suspension. The simulation results show a high accuracy and a good performance.

유체역학적 해석을 위한 선망 어구 운동의 동적 시뮬레이션 (Dynamic simulation of a Purse seine net behavior for hydrodynamic analysis)

  • 김현영;이춘우;차봉진;김형석;권병국
    • 수산해양기술연구
    • /
    • 제38권2호
    • /
    • pp.172-178
    • /
    • 2002
  • 본 연구는 유체역학적 해석을 이용하여 선망 어구 운동을 동적으로 시뮬레이션하였다. 선망 어구는 조업 과정 중에 어구의 형상이 크게 바뀌는 특성이 있고, 모든 조업단계에서 어구요소가 3차 시스템이며 대부분 망지라는 유연한 물체에 의해 구성되어 있어 외력에 대해 그 형상이 비선형적으로 변하므로 모델링이 어렵다. 본 연구에서는 질량-스프링 모델을 이용하여 수학적으로 기술하였다. 선망의 조업 과정중 그물의 투망, 침강, 죔줄을 죄는 과정의 어구운동을 시뮬레이션하였다.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.