• Title/Summary/Keyword: Spring Motion

Search Result 494, Processing Time 0.023 seconds

Sensitivity Analysis of the Zigzag Switch under Acceleration and Centrifugal Forces (가속력과 원심력을 받는 지그잭 스위치의 민감도 해석)

  • 김경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1067-1072
    • /
    • 1996
  • Sensitivity analysis of the cylindrical zigzag cams under acceleration and centrifugal forces is performed. A Lagrangian method is used to determine the mechanism constant of zigzag track, And the equation of motion for cylindrical zigzag cam under rectangular pulse is derived by the governing equations of a single spring mass system. The ratio of the drive force tn resisting force is derived by angular acceleration, centrifugal force and setback force on the operation of the munition. The theoretical sensitivity curves for 3 models are analyzed. And experiments for 3 models are conducted to check safe and functional zone. Zigzag cam types can be satisfied all major design requirements for switch system of munition.

  • PDF

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 손인수;안성진;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.958-963
    • /
    • 2003
  • In this paper a dynamic behavior of simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appears more greatly.

  • PDF

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Ahn, Tae-Su;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

Numerical Analysis of Performance of Linear Compressor for the Stilting Cryocooler (스터링 냉동기의 선헝압축기 운전특성에 관한 수치해석적 연구)

  • 홍용주;박성제;김효봉;염한길;최영돈
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.58-62
    • /
    • 2002
  • The purpose of this study is to analyze the charging gas effect on the resonance and performance characteristics of the linear compressor for small scale FPFD Stirling refrigerator. To ensure high performance of FPFD type Stirling refrigerator, the operating frequency of the refrigerator should be around the natural frequency of compressor. The gas spring effect which is induced from Pressure change in cylinder due to motion of pistons has significant effect on the natural frequency of the compressor. The numerical results show the linear compressor has high natural frequency when the charging pressure of working fluid is high and the stroke of compressor, current, input power and efficiency of compressor were shown with different operating conditions.

Stroke and Position Control for Springless LOA (Springless LOA를 이용한 스트로크 및 포지션 제어)

  • Jang, S.M.;Kwon, C.;Jeong, S.S.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.87-89
    • /
    • 2001
  • The unbalanced reciprocation force due to armature reaction field decreases the advantage of moving coil linear motor, such as a high degree of linearity and controllability in the force and motion control. This paper firstly describes the coil inductance, and the unbalanced force. Secondly, the dynamic simulation algorithm considering the armature reaction effect and variable inductance is proposed. Thirdly, the control algorithm is proposed to reciprocate a load without mechanical spring at the required stroke and position. Finally, the validity of the proposed algorithm is confirmed by experiments.

  • PDF

An Observation of the Application of a Magnetic Force to the Bicycle Cushion System and its Nonlinearity (자석 척력의 자전거 쿠션장치 적용 및 비선형성 고찰)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • This paper describes the dynamical behavior of the bicycle and its nonlinear effect when magnetic repulsive forces are applied to the bicycle cushion system. A finite-element method was used to obtain its reliabilities by comparing the experimental and numerical values and select the proper magnet sizes. The Equivalent spring stiffness values were evaluated in terms of both linear and nonlinear approximations, where the nonlinear effect was specifically investigated for the ride comfort. The corresponding equations of linear and nonlinear motion were derived for the numerical model with three degrees of freedom. Dynamic behaviors were observed when the bicycle ran over a curvilinear road in the form of a sinusoidal curve. The analysis in this paper for the observed nonlinearity of magnetic repulsive forces will be a useful guide to more accurately predict the cushion design for any vehicle system.

Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack (크랙을 가진 유체유동 파이프의 동특성 해석)

  • 유진석;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF

Development of a Ultrasound Probe for 3-D Ultrasonic Imaging (3차원 의료기기용 초음파진단기 프로브 개발)

  • Park, Jong-Soo;Kim, Seong-Rae;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.87-93
    • /
    • 2005
  • Three-dimensional ultrasonic probes being applied to the medical imaging can be grouped into three depending on the scanning methods, which are a mechanical type system, a free-hand system, and 2D phased arrays system. A mechanical type scanner uses a mechanically driven transducer to acquire series of 2D plane images. By integrating these images, a 3-D medical image can be constructed. A motor driving mechanism is a conventional choice for mechanically driving a transducer assembly which picks the raw ultrasonic images up. In this paper we attempt to design a 3D ultrasonic probe which has a operating mechanism of s tilting 3-D scanning. The motion of a transducer assembly of the ultrasonic probe is analytically modelled. We propose a selection procedure for the diameter of a wire rope driving the transducer assembly and the size of torsional spring which gives an initial tension to wire ropes.

  • PDF

Numerical Analysis of Helicopter Rotor Blade in Forward Flight Using Unstructured Adaptive Meshes (비정렬 적응격자 기법을 이용한 전진비행하는 헬리콥터 로터 블레이드의 수치 해석)

  • Park Y. M.;Lee J. Y.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.95-101
    • /
    • 2003
  • A three dimensional inviscid parallel flow solver has been developed for the simulation of rotor blades in forward flight. The computational domain is divided into stationary and rotating zones for the more efficient mesh adaptation. The conservative mesh treatment algorithm is used for the convection of flow variables and fluxes across the sliding boundary. A deforming mesh algorithm using modified spring analogy is used for the blade motion. In the present paper, detail descriptions of numerical analysis for forward flight are introduced. Some results are presented for a two bladed AH-1G rotor and compared with experimental data.

  • PDF

Computation of 3-Dimensional Unsteady Viscous Plows Using an Parallel Unstructured Mesh (병렬화된 비정렬 격자계를 이용한 3차원 비정상 점성 유동 계산 기법 개발)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.18-24
    • /
    • 2003
  • In the present study, solution algorithms for the connotation of unsteady flows on an unstructured mesh me presented Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and suing analogy method for moving mesh are all considered and compared. Special treatments of suing analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating ing are compared with experimental data.

  • PDF