• Title/Summary/Keyword: Spring Method

Search Result 1,887, Processing Time 0.033 seconds

Evaluation of Analytical Method for Detent Spring Force Correction (디텐트 스프링 교정을 위한 해석적방법의 적용성 평가)

  • Kim, Sun-Ho;Kwon, Hyuk-Hong;Park, Kyoung-Taik;Jung, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.57-63
    • /
    • 1999
  • A thin metal plate such as detent spring has the shape deformation due to the phenomenon of spring back after press machining and heat treatment process. This requires the correction of spring shape and force in final inspection process. To do correction of the shape deformation the impact force is manually applied to the bended part of detent spring after measuring the shape deformation and spring force. To develop the automatic spring force correction system, applied force of occurring plastic deformation must be derived from the experimental method. But frequent change of spring shape and material makes it difficult to accomplish the experimental method to be applied. This paper describes the analytical method for detent spring force correction system is to be substituted for the experimental method. FEM(Finite Element Method) is used to find the boundary value between elastic and plastic deformation in the analytical method. To confirm the validity of the analytical method, the result of two methods is compared each other at various applied force conditions. It shows that the simulation result of the analytical method is consistent with the result of the experimental method within the error bound ${\pm}$5%. The result of this paper is useful for development of the automatic spring correction system and reduction of the complicated and tedious processes involved in experimental method.

  • PDF

An Efficient Method for Calculating Nonlinear Stiffness of the Progressive Multi-Leaf Spring (Progressive Multi-Leaf Spring의 비선형 강성해석 법)

  • Kim, Sung-Soo;Moon, Won-Kyu;Yoo, Young-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.413-419
    • /
    • 2000
  • An efficient method for calculating the nonlinear stiffness of the Progressive Multi-Leaf Spring is developed and evaluated. It utilizes the interaction between the main and help spring that induces the nonlinearity. The main and the help springs are modeled as multi-leaf cantilever beams, and, then, they are integrated as one by connecting the two models for each side of the Progressive Multi-Leaf Spring at the center-bolt. The results from the developed model are evaluated by use of the commercial FEA program, ABAQUS. The nonlinear spring coefficients calculated by FEM analysis yield the numbers very close to the numbers calculated for the spring coefficients by used of the developed method. From the comparative evaluations, the developed method is accurate enough and very efficient in calculation time for evaluating the nonlinear spring property of the Progressive Multi-Leaf Spring.

  • PDF

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

A Study on Design Method of the Cylindrical-Taper Section Coil Spring (등반경-테이퍼 소재 비선형 특성의 코일 스프링 설계 방법 연구)

  • 권혁홍;최선준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.175-181
    • /
    • 1998
  • The coil spring is used in the suspension of automotive vehicles and small omnibus. Recently, it can be adopted hardening type spring which spring constant is accompanied by increasing displacement to increase passenger comfortability. One of methods which assert this characteristic is cylindrical-taper section coil spring. In this paper we calculate ideal spring characteristic curve from the given vehicle conditions, and show the design method of the cylindrical-taper section coil spring.

  • PDF

Analysis of Underground Box Structures with Inelastic Soil Spring (비탄성 지반 스프링을 이용한 지하 구조물의 해석)

  • Oh, Chi-Woong;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.91-96
    • /
    • 2002
  • There are many methods for analyzing underground box structures. One is the method of Iterative removal of tensional spring. The other is the method of modeling of ground to 8-node elastic-plastic planar element. In this study, We use inelastic soil spring element for analyzing underground box structures. First, if N-value is over 50, the results of inelastic soil spring method is the same as the method of 8-node planar element in last stage. Second, as N is increasing, element forces in two methods are generally decreasing. Third, as N-value is increasing, element forces in two method are generally decreasing and displacement has decreasing incline. This is the same as the force-displacement curve of general underground structures.

Study on the influence of hold-down spring on the vibration characteristics of core barrel

  • Tiancai Tan;Lei Sun;Litao Liu;Jie Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3252-3259
    • /
    • 2023
  • The influence of hold-down spring (HDS) on the vibration characteristics of core barrel is studied in this paper. First, the vibration characteristics experiment of core barrel was carried out with four type of different hold-down spring. These hold-down springs represent the same hold-down force under different spring stiffness and different hold-down force under the same spring stiffness. And then a new finite element method for researching the influence of hold-down spring on the vibration characteristics of core barrel was presented. This new method could consider the influence of the hold-down force and the spring stiffness at the same time. The results suggest that, the hold-down force and friction have greater influence on the vibration characteristics of core barrel than the spring stiffness, and the influence is nonlinear. The influence of the boundary condition on beam mode is greater than that on shell mode for core barrel.

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

Detection of Coliform and Escherichia coli in Spring Water by Polymerase Chain Reaction (PCR법을 이용한 옹달샘물의 대장균군 및 대장균 검출)

  • 류승희;박석기
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.193-202
    • /
    • 2002
  • The polymerase chain reaction(PCR) of target lacZ and uidA genes were used to detect total coliform and Escherichia coli for determining water quality, respectively. Of 109 spring waters, coliform were detected from 38 spring waters by lacZ PCR method but 21 spring waters by culture method accepted by the Ministry of Environment for water quality monitoring. The lacz PCR method gave the results statistically equivalent to those of the culture method(kappa=0.62, McNemar=17.00). The uidA PCR method gave the same results to those of the culture method. The sensitivity and specificity of coliform and E. coli by PCR method were 100% and 80.7%, respectively. Therefore, PCR can be used for the rapid identification of Escherichia coli and coliform in potable water using uidA and lacZ.