• Title/Summary/Keyword: Spring Actuator

Search Result 200, Processing Time 0.023 seconds

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

On the Performance Test of the Piezoelectric-Hydraulic Pump (압전유압펌프 성능실험에 대한 연구)

  • Joo, Yong-Hwi;Hwang, Jai-Hyuk;Yang, Ji-Youn;Bae, Jae-Sung;Lee, Jong-Hoon;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.822-829
    • /
    • 2015
  • In this paper, the piezoelectric-hydraulic pump with a piezostack actuator as a driving source has been designed, fabricated, and evaluated for its application to UAV's brake system. The performance requirements of the piezoelectric-hydraulic pump were decided based on the requirements analysis of the target aircraft brake system. The geometric design of the piezoelectric-hydraulic pump to meet the performance requirements of the pump was conducted, and all components of the pump including the spring sheet type check valves were machined with close tolerance. By constructing a test apparatus for the performance check of the piezoelectric-hydraulic pump, the performance characteristics of the pump, such as the outlet flow rate for load-free condition and the outlet oil pressure for closed loop condition, have been evaluated. It has been found by the performance test result that the developed piezoelectric-hydraulic pump satisfies the design requirements effectively.

Development of De-orbiter using Drag-sail (가항력돛을 이용한 궤도이탈장치 개발)

  • Choi, Junwoo;Kim, Si-on;Lee, Joowan;Yun, Tae-gook;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, we design and fabricate a de-orbiter using drag-sail and evaluate deployment characteristics. Without employing an actuator to deploy, the de-orbiter is activated by the SMA wire based the release mechanism and driven by the restoring force of the tape-spring. For efficient storage and deployment of drag-sail, an origami method of original ISO flasher is chosen and low priced mylar film is used as the material of the drag-sail. In addition, through the fault tree analysis method which is one of the one-shot device reliability evaluation methods, we confirm the reliability of the de-orbiter(0.997572) and the Roller failure has the highest criticality. Finally, we find feasibility of the proposed de-orbiter through the deployment demonstration of drag-sail.

Development of Intravascular Micro Active Endoscope(II) -System Design, Fabrication and In-vitro Evaluation- (혈관 삽입용 초소형 작동형 내시경의 개발(II) - 시스템 설계, 제작 및 체외 성능 분석 -)

  • Chang, Jun-Keun;Chung, Seok;Lee, Yong-Ku
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.278-286
    • /
    • 1999
  • To predict the behavior of the intravascular micro active endoscope in the real human vascular system, a human mock circulation system was developed. The intravascular micro active endoscope which consists of micro active bending catheter and micro drug infusion catheter was driven in the velocity, Re number and temperature controlled flow. The three SMA (Shape Memory Alloy) zigzag type spring in the micro active bending catheter was heated by the electric current generated by PWM controller, and the shape memory effect made the actuator bend to any direction. The micro drug infusion catheter was driven through the inner hole of the micro active bending catheter. A mock circulation system is shaped from Ascending Arota to Femoral artery according to a human data (the data contains many vascular sizes and hydrographs of many control points). We developed a vascular model with glass and silicone tubes, and set the flow system with circulation parts, flow settling parts, and lots of valves. The heater and heat-controller was added to the How system to centre! the temperature of the How at 36.5$^{\circ}C$. The result showed that the developed intravascular micro active endoscope could be induced to any point in the vascular model.

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

A Study on the Chattering under Cryogenic Flow Test of a Oxidizer Shutoff Valve (산화제 개폐밸브의 극저온 유동시험에서 채터링의 고찰)

  • Lee, JoongYoup;Han, SangYeop;Lee, SooYong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • The oxidizer shutoff valve of a gas generator controls the mass flow rate of the propellant of a rocket engine using pilot pressure and spring the force of the valve. The developing oxidizer shutoff valve can be shut off if the pilot pressure is removed from the actuator. Therefore, force balancing is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure required to open the poppet and to determine the working fluid pressure at which the valve starts to close. Under cryogenic flow test as a tests level of C.R.T(Control Random Test), the chattering phenomena occurred due to much leakage of a metal seat section. The pressure for chattering of the oxidizer valve is predicted at about 11 bar using force balancing analysis.

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

Dynamic Characteristics for Fuel Shutoff Valve of a Gas Generator (가스발생기 연료개폐밸브의 동적 거동)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Fuel shutoff valve of a gas generator controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been designed dynamic model using the AMESim and predicted flow coefficient of the valve by Fluent CFD analysis. Various results from the prediction and the analysis have been compared with experiments. Finally, dynamic characteristics of the valve have been verified with experimental results.

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.