• Title/Summary/Keyword: Spreading area

Search Result 343, Processing Time 0.023 seconds

The Characteristics of Traditional Representation in the Artist's Garden of the Garden Exposition seen through the Design Process (설계과정을 통해 본 정원박람회 작가정원의 전통재현 특성)

  • Lee, Song-Min;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.101-110
    • /
    • 2020
  • This study was conducted through the analysis of literature and on-site research as a case study of 14 artists' gardens with traditional themes presented at the garden fair. With Focusing on the design process for determining traditional reproduction, the following characteristics and implications were derived by analyzing the design goals, selection of subjects for traditional reenactment, determination of methods for reproduction, and design stages of landscape components. First, the pattern of selecting traditional structures as subjects for reproduction in many artist gardens can be understood as an advantage of being suitable for narrow sites and having remarkable topic communicability. They directly delivered the design intent by adding the names of traditional structures such as Madang, Wool, Buttumak, Jangdokdae, Chuibyeong and Seokgasan. Works expressed indirectly, such as Wall, Korean Garden, Suwon, and Seoul craftsmen, have relatively weak topic communicability. There were also symbolic representations of objects to be reproduced, such as Seonbi, marginal spaces, and Pung-lyu. Second, while reproducing Hanok Madang, separate the gardens paved with grass and stone, the fortress wall of Suwon Hwaseong and the northwest Gongsimdon of the watchtower. Also the garden with a miniature version of the extraneous Yong-yeon and the garden, which was reproduced as a low decorative wall in the rest area based on Nakan-Eupseong Fortress, shows the need for a deep understanding of tradition. On the other hand, the reproducting works of choosing the location of the traditional garden, the Korean Garden showed the importance of systematic arrangement with the surrounding environment, the beauty of the space in the courtyard of Hanok, the beauty of the slowness enjoyed by the scholars and the reenactments of the Pung-lyu culture of Moonlight boating are not only imitating traditional structures but also spreading understanding of tradition to garden culture and sentiment. Third, there were many works that reconstructed the real-size traditional structure in a straightforward way in relation to design. The garden was divided into Chuibyeong and the living space was decorated with Buttumak, chimneys, and gardens, and facilities representing Gyeongbokgung Palace, Soswaewon, and Seoseokji were systemically arranged. However it recognized the importance of selecting the key design elements, constructing the elevation of the structure, and the sense of scale of the space from works that reproduced the large Suwon Hwaseong and Nakan-Eupseong in an abstract way. While there are examples gardens of Hanok yards and Bazawul, which are far from the original image among the gardens that chose the dismantling method, the Blank-space garden expressed only by a frame composed of cubes, and Seonbi's Sarangbang garden, that permeated the moonlight with many traditional structures are the positive examples. The Seoul Artisan Garden, Jikji Simche Garden and Pung-lyu Garden, which display modernly designed landscape components, need an explanation to understand the author's intention.

An Evaluation of Various Synthetic Generations and Polycross Progenies in Winter Active Tall Fescue (Festuca arundinacea Schreb) - I. Summer Forage Phase (동기생육형(冬期生育型) 톨페스큐의 합성품종세대(合成品種世代)와 다계교배(多系交配) 후대검정(後代檢定)에 관(關)한 연구(硏究))

  • Kim, Dal Ung
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.341-356
    • /
    • 1975
  • This study was carried out to evaluate three winter active synthetic varieties in a succeeding generations of improvement and polycross progenies of seven genotypes selected at the cool and wet climate of the Western Oregon, in their performance of the polycross progeny test comparing with a control variety, high yielding 'Fawn', at Daejon, Korea. Various plant and leaf characteristics, especially related to photosynthesis, and forage production during the first summer after the establishment were examined. The important conclusions of this study are summarized as follows: 1. The differences of leaf fresh weight among groups and control exhibit genetic differences. The a verage of leaf fresh weight of polycross progeny group was the heaviest and those of winter active synthetic varieties in the succeeding generations of improvement was heavier than variety 'fawn'. Within polycross progeny group the genotypes exhibit genetic differences for leaf dry weight. 2. The leaf area exhibited genetic differences among groups and control. The average of winter active synthetic varieties in a succeeding generation was larger than variety 'Fawn'. Those oi the polycross progeny group was the largest among groups and control. 3. Differences of specific leaf weight(S. L. W.) among and within varieties, genotypes and control were not significant. Further investigation in this respect is necessary through the study of the diurnal change in S. L. W. 4. Differences of leaf width among groups and control exhibited genetic differences. The average leaf width of winter active varieties was larger than those of 'Fawn' variety. And those of polycross progenies of genotypes was the largest. 5. Plant height of 'fawn' variety in the first measurement was higher than those of winter active tall fescue varieties and genotypes. The deviation in plant height among polyeross progenies of seven genotypes gave a great deviation. The regrowth ability of plant height was not different suggesting that this characteristics was about the same among and within groups and control. 6. Plant width, spreading ability, improved through the succeeding generations of the improvement of the winter active synthetic varieties for the first measurement. Differences of plant width at the second measurement among genotypes within polycross progeny group were big enough to show the genetic difference. 7. Tiller number of the winter active synthetic varieties and the average of genotypes in polycross progeny was more than those of the control 'Fawn' in the first measurement. On the second measurement, the differences of tiller number appeared among three synthetic varieties indicating improvement, and there were genetic differences among seven genotypes in polycross progeny test. 8. Forage yield on the first cutting showed a considerble improvement of forage yield in the more advanced generation of synthetic varieties and genetic differences among seven genotypes in the polycross progeny test. The average of polycross progeny group was higher than those of the control or three winter active varieties. It was suggested that we could make a further improvement for the forage yield. 9. The regrowth ability of these winter active varieties and genotypes was about the same capacity at least on the measurement of the regrowth in forage yield and plant height during summer. 10. On the whole, the averages of the polycross progeny group was in the highest value and those of synthetic varieties were higher than the control variety, 'Fawn', for the most characteristics except S. L. W. and the plant height on the first measurement even though the differences were not always significant. And there were genetic differences among seven gentypes in their performance of the polycross progeny. 11. Although it was not always sgnificant, the most advanced winter active variety, '1002', had in the highest value for all plant characteristics and forage yield measurements than the other two varieties, '1001'. 12. The results of the association study among various characteristics were quite agreeable and would be useful in the selection of desirable genotypes for the development of a better variety.

  • PDF

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF