• Title/Summary/Keyword: Spray-Wall Interaction

Search Result 30, Processing Time 0.019 seconds

Recent Progress of Spray-Wall Interaction Research

  • Lee Sang-Yong;Ryu Sung-Uk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1101-1117
    • /
    • 2006
  • In the present article, recent progress of spray-wall interaction research has been reviewed. Studies on the spray-wall interaction phenomena can be categorized mainly into three groups: experiments on single drop impact and spray (multiple-drop) impingement, and development of comprehensive models. The criteria of wall-impingement regimes (i.e., stick, rebound, spread, splash, boiling induced breakup, breakup, and rebound with breakup) and the post-impingement characteristics (mostly for splash and rebound) are the main subjects of the single-drop impingement studies. Experimental studies on spray-wall impingement phenomena cover examination of the outline shape and internal structure of a spray after the wall impact. Various prediction models for the spray-wall impingement phenomena have been developed based on the experiments on the single drop impact and the spray impingement. In the present article, details on the wall-impingement criteria and post-impingement characteristics of single drops, external and internal structures of the spray after the wall impact, and their prediction models are reviewed.

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

Study of Spray Droplet/Wall Interaction (분무액적과 벽의 상호작용에 대한 연구)

  • 양희천;유홍선;정연태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

Modeling of a Gasoline Spray Impinging on a Wall (벽면충돌 가솔린 분무 모델)

  • 김태완;원영호;박정규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.30-37
    • /
    • 2001
  • Most gasoline engines employ a port injection system to achieve the better fuel-air mixing. A part of injected fuels adheres to the wall or intake valve and forms a film of liquid fuel. The other is secondarily atomized by the spray-wall interaction. A better understanding of this interaction will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions. In the present research, the spray-wall interaction was investigated by a laser sheet visualization method. The shape of sprays was pictured at various impinging velocities and angles. The fuel dispersion was estimated by fluorescence light, and the atomization was evaluated by the enlarged images of droplets. The experimental results were compared with model predictions which are based on OPT method. The model has been modified to have the better agreement with the experimental result, and was implemented in the KIVA-II code.

  • PDF

A Study on the Behavior and Heat Transfer Characteristics of Impinging Sprays

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.374-383
    • /
    • 2001
  • The spray/wall interaction is considered as an important phenomenon influencing air-fuel mixing in the internal combustion engines. In order to adequately represent the spray/wall interaction process, impingement regimes and post-impingement behavior have been modeled using experimental data and conservation constraints. The modeled regimes were stick, rebound, spread and splash. The tangential velocities of splashing droplets were obtained using a theoretical relationship. The continuous phase was modeled using the Eulerian conservation equations, and the dispersed phase was calculated using a discrete droplet model. The numerical simulations were compared to experimental results for spray impingement normal to the wall. The predictions for the secondary droplet velocities and droplet sizes were in good agreement with the experimental data.

  • PDF

Development and Application of a New Spray Impingement Model Considering Film Formation in a Diesel Engine

  • Ryou, Hong-Sun;Lee, Seong-Hyuk;Ko, Gwon-Hyun;Hong, Ki-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.951-961
    • /
    • 2001
  • The present article presents an extension to the computational model for spray/wall interaction and liquid film processes that has been dealt with in the earlier studies (Lee and Ryou, 2000a). The extensions incorporate film spread due to impingement forces and dynamic motion induced by film inertia to predict the dynamic characteristics of wall films effectively. The film model includes the impingement pressure of droplets, tangential momentum transfer due to the impinging droplets on the film surface and the gas shear force at the film surface. Validation of the spray/wall interaction model and the film model was carried out for non-evaporative diesel sprays against several sources of experimental data. The computational model for spray/wall interactions was in good agreement with experimental data for both spray radius and height. The film model in the present work was better than the previous static film model, indicating that the dynamic effects of film motion should be considered for wall films. On the overall the present film model was acceptable for predication of the film radius and thickness.

  • PDF

Wall Impingement Phenomena of a Fuel Spray Injected by an EFI Injector (EFI 인젝터에 의한 연료분무의 벽면충돌 특성)

  • Kim, Y.I.;ARAI, M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In a port fuel injection system of engine, a large part of fuel injected into an intake port adheres on its wall and inlet valve. Consequently, the wall impinging spray interaction might occur the generation of several harmful phenomena. There are uncontrollable mixture formation, an accidental backfire and unburned hydrocarbons. Therefore, it is important to analyze the fuel behavior during the spray-wall interaction. In this study, splash characteristics of impingement and reflecting or scattering behavior of droplets of fuel injected from EFI nozzle were studied experimentally. A test fuel used is LAWS and its physical characteristics are similar to the conventional gasoline except for the ignition point. Since the liquid film formed immediately after impinging on an impingement plate is unstable, it is easy to cause secondary disintegration. In addition, when the intermittently impingement on the impingement plate with LAWS, the splash ratio is around 0.6. If an injection period becomes longer, liquid film will become thick and the splash ratio will fall bout 10 percent. On the other hand, when the injection period of an intermittent spray is long, the same time lapse as a continuous spray is shown.

  • PDF

Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging (X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석)

  • Bae, Gyuhan;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

Simulative consideration for w-shaped d.i. diesel combustion chamber system using spray wall impaction (분무충돌을 이용한 w-형 직접분사식 디젤연소실에 대한 계산적 고찰)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 1997
  • Combustion chamber systems using spray impinged on walls have been studied for improving combustion characteristics in high speed direct injection diesel engines. The fuel spray injected in a small combustion chamber may be easily impinged and deposited on the wall. The fuel deposit has been considered as the cause for unburned emission due to difficulty of fuel-air mixing. In this paper w-shaped combustion chamber which has four raised pips on the side wall is introduced and discussed by comparing with conventional chamber with no pips. The computer code employing new spray-wall interaction model in general non-orthogonal grids is used in here. The model is applied into the new chamber shape with raised pips. In this chamber system four-hole nozzle is used, and the sprays injected from the each hole impact on lands raised from the chamber wall surface. After impacting, the sprays break up into much smaller drops and distribute over all the chamber space, instead of distributing just near the wall surface in conventional omega-shape. The results showed the potential of the w-shaped chamber employing pips for dispersing droplets so as tn avoid the fuel deposit regions.

  • PDF

Numerical Analysis of the Effect of Injection Pressure Variation on Free Spray and Impaction Spray Characteristics

  • Park, Kweon-Ha;Kim, Byung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.236-250
    • /
    • 2000
  • Compression ignition direct injection diesel engines employed a high pressure injection system have been developed as a measure to improve a fuel efficiency and reduce harmful emissions. In order to understand the effects of the pressure variation, many experimental works have been done, however there are many difficulties to get data in engine condition. This work gives numerical results for the high pressure effects on spray characteristics in wide or limited space with near walls. The gas phase is modelled by Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled using the discrete droplet model approach in Lagrangian form and the drop behavior on a wall is calculated with a new droplet-wall interaction model based on the experiments observing individual drops. The droplet distributions, vapour fractions and gas flows are shown in various injection pressure cases. In free spray case which the injection spray has no wall impaction, the spray dispersion and vapour fraction increase and drop sizes decrease with increasing injection pressure. The same phenomena appears more clearly in wall impaction cases.

  • PDF