• Title/Summary/Keyword: Spray pattern

Search Result 215, Processing Time 0.024 seconds

Study on Macroscopic Spray and Spray Pattern Characteristics of Gasoline Direct Injection Injector for the Variation of Injection Pressure (분사압력 변화에 따른 가솔린 직접분사 인젝터의 거시적 분무와 분무패턴 특성에 관한 연구)

  • Park, Jeonghyun;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the macroscopic spray characteristics and spray pattern of a gasoline direct injection (GDI) injector according to the increase of injection pressure. The macroscopic spray characteristics, such as a spray tip penetration and spray angle, were measured and analyzed from the frozen spray images, which are obtained from the spray visualization system including the high-speed camera, light-source, long-distance microscope (LDM). The spray pattern was analyzed through the deviation of the center of the spray plum and images were acquired using Nd: YAG Laser and ICCD(Intensified charge coupled device) camera. From the experiment and analysis, it revealed that the injection pressure have a significant influence on the spray tip penetration and spray pattern. However, the injection pressure have little influence on the spray angle. The increase of injection pressure induced the reduction of a closing delay. In addition, the deviation of spray center increase with the increase of injection pressure and the distance from a nozzle tip.

A Study on Design of Nozzle Tip for Airless Spray Coating (에어리스 스프레이 도장용 노즐 팁 설계에 관한 연구)

  • Kim, Dong-Keon;Kim, Soon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-188
    • /
    • 2012
  • This study was carried out to design the spray nozzle tip for airless spray coating. Airless spray coating is the process of coating an object with a liquid spray of paint or other fluid. The nozzle tip controls the fluid flow rate and creates back pressure in the system. The nozzle tip also defines the spray pattern by the size and shape of the orifice. The spray pattern of nozzle tip was investigated numerically using ANSYS CFX ver. 14.0. It was observed that performance result of designed nozzle tip was correspond well, compared with that of GARCO nozzle tip.

An Experimental Study on the Characteristics of Twin Spray Ejected from Two Swirl Spray Nozzles (두개의 와류분무 노즐로부터 분사되는 이중분무의 분무특성에 관한 실험적 연구)

  • 김인구;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.359-372
    • /
    • 1988
  • Characteristics of twin spray ejected from two swirl spray nozzles were studied experimentally. By using a patternator for measuring volumetric flux of drop flow at various locations inside the spray, variation of the twin spray pattern along the axial direction was studied with changing the injection pressure and the distance between the nozzles. The general findings from the experiments are as follows: (i) as axial distance from the nozzles increases, the spray pattern in x-z plane which contains both nozzles changes significantly. On the other hand the spray pattern in y-z plane which passes the midpoint between two nozzles remains almost unchanged at outer region as axial distance and injection pressure vary; (ii) at the downstream of the twin spray with spray interaction, the maximum volumetric flux in y-z plane (q$_{max}$)$_{y}$, has tendency to become larger than that of x-z plane (q$_{max}$)$_{x}$, due to a characteristic(hollow cone shape) of the constituting swirl sprays, and this trend is pronounced at higher injection pressure since the cross-section of each single spray remains hollow at the longer axial distance from each nozzle with higher injection pressure; (iii) at a certain axial distance from the nozzles, the cross-sectional shape of the boundary of the twin spray tends to be circular similar to that of the single spray with twice the flow-rate, and that distance is not proportional to the distance between two nozzles; (iv) though there are some collisions between droplets from each nozzles of twin spray, in present experimental range, the flow pattern of gas including the entrainment effect plays the key role in spray interaction.n.ion.n.

Spray Pattern Analysis for a Centrifugal Fertilizer Distributor with Two Shutter Holes (두 개의 셔터 구멍이 적용된 원심식 비료 살포기의 살포패턴 분석)

  • Hwang, Seok-Joon;Park, Jeong-Hyeon;Lee, Ju-Yeon;Kim, Ki-Duck;Shin, Beom-Soo;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.8-19
    • /
    • 2019
  • In this study, the spray pattern of a centrifugal fertilizer distributor with two shutter holes was analyzed and an effective driving width that satisfies proper spray uniformity was derived. The centrifugal fertilizer distributor was mounted on a tractor with a rated power of 23.7 kW and static and dynamic spray pattern tests were performed according to the standard procedure proposed by the American Society of Agricultural and Biological Engineers Standard ASAE S341.5. The height of the fertilizer distributor was 80 cm from the ground and the PTO (power take-off) shaft speed of the tractor was fixed at 540 rpm. The fertilizer scattered in space was collected using 275 evenly spaced collectors at shutter opening ratios of 25%, 50%, 75%, and 100%. The spray pattern was analyzed via the amount of sprayed fertilizer at each collector location and the coefficient of variation was used as an indicator of spray uniformity. Using the analyzed spray pattern, the effective driving width that satisfied less than 15% of the coefficient of variation was derived for different tractor driving patterns (race track mode, back and forth mode). From the results, spray uniformity increased as the shutter opening ratio decreased. The largest effective driving width was 8 m at a shutter opening ratio of 25% for both driving patterns.

A Study on the Measurement of Individual Spray Cone Angle from Gasoline Direct Injection Injector using Spray Pattern Analysis (분무패턴 분석을 이용한 가솔린 직접 분사식 인젝터의 개별 분무플럼 분무각 측정 방법에 대한 연구)

  • Park, Jeonghyun;Cho, Hanbin;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study is to propose and compare methods for measuring individual spray cone angles using spray cross-section images. In direct injection gasoline engines, it was believed that the distribution of air-fuel mixture in the combustion chamber directly affected combustion performance and emission formation. However, since gasoline direct injection (GDI) injectors have a small injection angle, interference between individual spray plumes occurs. Therefore, GDI injectors have only measured the spray angle of the entire spray. To overcome these limitations, three methods of indirectly measuring the spray cone angles of individual spray plume were presented and compared by forming sheet beams using Nd:YAG laser and acquiring spray cross-section images. Each method currently has advantages and disadvantages, and research to apply the method suitable for various GDI injectors needs to be continued.

Dense Spray Patternation using Optical Tomography

  • Cho, Seongho;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.398-407
    • /
    • 2013
  • Optical tomography was used to measure the pattern of spray cross-section. The maximum-likelihood estimation (MLE) algorithm was used to reconstruct the spray cross-section from the measured transmission rate of the spray. A swirl-type injector was used to form an optically dense spray, and the test was carried out in a high-pressure chamber, to control the pressure condition of the test site. Before the experiment, the reliability of the MLE-based reconstruction algorithm was verified, by comparing it with a conventional filtered back projection reconstruction (FBP) method. The MLE algorithm showed superior reconstruction of the image. In the spray patternation experiment, the results of the optical tomography and optical line patternator, which uses Mie scattering signal information, were compared. While measuring the cross-section of optically dense spray, the intensity of the scattering signal had attenuated to an uncorrectable level, which led to incorrect spray pattern measurement by the optical line patternator. However, reliable results were obtained by optical tomography, under the same condition. Finally, the pattern of the optically dense spray was measured at various chamber pressures, of up to 3 MPa. As the chamber pressure increased, the hollow cone-shaped swirl spray shrank, and the attenuation coefficient value of the inner region increased.

A study on the erosive wear of spray tip nozzle by epoxy primer paint impingement and the spraying characteristics (에폭시 프라이머 도료의 에어리스 스프레이 분사 시간에 따른 팁 노즐 침식마모경향과 분사특성 연구)

  • Kim, Jinuk;Cho, Yeon-Ho;Cheon, Je-Il;Han, Myoung-Soo
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.59-63
    • /
    • 2015
  • Airless spray which is widely used for painting to ship blocks and hull sides is the coating method for attaching atomized paint material to the substrate using spray tip nozzle with compressed air. When the paint material which has high solid contents such as epoxy primer paint is atomized by passing through spray tip nozzle with high pressure, the nozzle composed of tungsten carbide(WC) undergoes the erosive wear, leading to widening of nozzle hole. The deformation of nozzle hole induces improper spray pattern and coating failures such as finger pattern and sagging because the conditions of spray pump pressure and paint flow rate for developing full spray pattern are changed. In this study, an appropriate replacement cycle of spray tip was predicted by measuring the erosive wear tendency as increasing the spraying time of epoxy primer paint.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

A Study on the Characteristics of the Spray Produced by Two Impinging Jets (충돌제트로 생성되는 분무의 특성에 관한 연구)

  • Kang, B.S.;Poulikakos, D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper an experimental study of a spray created by two impinging jets is presented utilizing a novel two-reference-beam double-pulse holographic technique. Visualization of the overall spray pattern as well as measurements on the size and velocity of the droplets were performed with the special emphasis on the effect of physical properties of liquids. The overall spray pattern clearly revealed the inherent wave nature In the disintegration process of this type of atomization. The structure of liquid elements near the impingement point is indicative of the mechanisms of the disintegration process. Surface tension plays an important role in the droplet size without any noticeable effect on the spray pattern, whereas viscosity affects the structure without any significant effect on the droplet sire. The droplet velocities were not affected by liquid properties.

  • PDF

Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection (VCO노즐에서 고압으로 분사되는 디젤분무의 특성)

  • 강진석;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF