• Title/Summary/Keyword: Spray droplets

Search Result 410, Processing Time 0.025 seconds

A Study on the Spray Cooling Characteristics according to the Angle of Hot Heat Transfer Surface (고온 열전달면의 각도에 따른 분무냉각 특성에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.320-327
    • /
    • 2002
  • An experimental study of heat transfer from hot flat surface to water sprays was conducted in high temperature region. Heat transfer measurements for hot flat surface were made by 4 sheathed C-A thermocouples. Droplets volume flux were also measured-independently at a position in spray field. The test conditions included variations in droplets volume flux, subcooling of cooling water of $1.565\times10^{-3} to 14.089\times10^{-3}m^3/m^2s and 80 to $20^{\circ}C$ respectively. The effects of inclination angle on heat transfer were investigated and changes in inclination angle of hot flat surface affected heat transfer coefficients of high temperature region.

Measurement of Sizes and Velocities of Spray Droplets by Image Processing Method (영상 처리에 의한 분무 액적의 크기 및 속도 추출)

  • Choo, Y.J.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • In this study, the sizes and velocities of droplets in sprays were measured by image processing method from digital images of local region of sprays. The morphological method based on the Euclidean distance transform, Watershed separation, and perimeter image was adopted for the recognition and separation of overlapped particles. The match probability method was used for the particle tracking and pairing. The measurement results show that the present method may be reliable for the analysis of the motion and distribution of droplets produced by spray and atomization devices.

  • PDF

2-D Simultaneous Measurements of Velocity and Diameter of Diesel Spray Droplets by Novel Interferometric Laser Imaging for Droplet Sizing (ILIDS) Method

  • Ryul, C.-S;Y. Moriyoshi;M. Yamada
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • The characteristics of Diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved Interferometric Laser Imaging for Droplet Sizing method. The experiments were carried out using an accumulator-type unit injector system and a constant-volume vessel. Two dimensional cross-section photographs of sprays were also taken using a double-pulsed Nd- YAG laser sheet and a linear array CCD camera. As a result, interesting relations between the droplets diameter and the velocity were found.

EFFECTS OF A SPLIT INJECTION ON SPRAY CHARACTERISTICS FOR A COMMON-RAIL TYPE DIESEL INJECTION SYSTEM

  • PARK S. W.;SUH H. K.;LEE C. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.315-322
    • /
    • 2005
  • This work was performed to investigate the effect of a split injection on spray characteristics of fuel sprays injected from a common rail system. In order to analyze the spray behavior and atomization characteristics at various rates of split injections, the injection durations of pilot and main injections were varied in experiments. The injection rate of split injection was measured to study the effect of the pilot injection on the main injection. By using a Nd:YAG laser and an ICCD camera, the development of the injected spray was visualized at various elapsed time from the start of injection. The microscopic characteristics such as SMD and axial velocity were analyzed by using a phase Doppler particle analyzer system. The results indicate that the ambient gas flow generated by the pilot injection affects the behavior of main spray, whereas the effect of pressure variation on the main spray is little. The spray tip penetration of a main spray with pilot injection is longer than that of the single injection by the effect of ambient gas flow. Also the main spray produces larger droplets than the pilot spray due to a small relative velocity between the droplets and ambient gas.

Analysis for Spray Flow Using PSIC Model in Combustion Chamber of Liquid Rocket Engine (PSIC 모델을 이용한 액체로켓의 연소실내 분무유동 해석)

  • Jeong Dae-Kwon;Roh Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.253-256
    • /
    • 2006
  • A numerical study for spray flow of fuel and oxidizer droplets in the combustion chamber has been conducted prior to the analysis of spray combustion of the liquid rocket engine. As the spray combustion model, DSF model and Euler-Lagrange scheme have been used. While the coupling effects of the droplets between gas phase and evaporated vapor have been calculated using PSIC model, SIMPLER algorithm and QUICK scheme have been used as numerical schemes. As the results, the calculations have shown velocity and temperature distribution in combustion chamber as well as mole fraction of fuel and oxidizer.

  • PDF

Spray Patterns and Atomization Characteristics of Viscoelastic Fluid with Impinging Jet (점탄성 유체에 따른 충돌분무의 분무패턴 및 미립화 특성)

  • Lee, Mun Hee;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2019
  • Viscoelastic fluid is used in various industrial sites because its cost reduction and environmental benefits by preventing formation of fine droplets that scattered around. However, viscoelastic fluids, unlike newtonian fluids, contain a shear thinning characteristic that decrease in viscosity as shear rate increases and elastic characteristic, making it difficult to predict spray breakup process. In this study we made three test fluids. Boger fluid with viscoelastic characteristics, and two newtonian fluids, were prepared to exclude shear thinning characteristics and study the effects of elastic characteristic only. Flow visualization, spray angle, and SMD were measured for three test fluids using laboratory scale impinging jet test apparatus. As a result, it was confirmed that Boger fluid, unlike the newtonian fluid, was not formed fine droplets that scattered around and the breakup process appeared differently. In addition, SMD was found to be large in Boger fluid, and the SMD according to pressure was confirmed that there is no significant difference.

Experimental Study of Droplet Characteristics Related to Electrospray Mode (정전분무모드에 관한 액적특성의 실험적 연구)

  • Kim, Ji Yeop;Lee, Doe Hyun;Cho, Ju Hyung;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.26-35
    • /
    • 2022
  • Electrospray is a method of atomizing fluid using high voltage supply and capable of generating continuous flow and coherent size of droplets. Electrical system and properties of fluids has enabled electrospray to have various spray modes. However, its studies have been confined only in Cone jet, which is more stable and easier to manipulate droplets' size than other spraying modes. Therefore, it is necessary to investigate and compare other spraying modes based on experimental parameters and physical properties of fluids. This research paper identified nine different spray modes. It was found out that Sauter Mean Diameter (SMD) is proportional to flow rate of fluids and maximum difference among spray modes was 1.7 times. On the other hand, SMD standard deviation had low variations on specific flow rates of fluids. Pulsed jet mode recorded the largest SMD standard deviation, while Spindle recorded the lowest.

Coverage Distribution of Blasted Droplets by an Orchard Sprayer (과수방제기 살포입자의 도포율 분포특성)

  • 구영모;김상헌;신범수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Uniform application of agri-chemicals will improve orchard pest management. An air-blast(orchard) sprayer designed for vineyards has been used: however, few research on the uniformity and coverage of the sprays has been reported. Distributions of spray coverage were measured with artificial targets and analyzed to enhance the efficiency of spray application. A structure was built to place water sensitive papers, sampling spray droplets blasted from the orchard sprayer. The sampling cards were collected from five directions at three distances (2.5, 3.0 and 3.5m) for two fan speeds (2,075 and 3,031 rpm), and analyzed using an image analysis system. The distribution of the coverage percent area did not follow the wind velocity pattern. The coverage by the low fan speed was more uniform and higher than that by the higher fan speed. The coverage percent area decreased with an increase of distance. The distribution of droplet density was similar to that of coverage. However, the coverage contribution by smaller droplets became more significant as the distance increased. The upward blasting distance was limited within 3m, but the limit to the ground level was expanded the distance more than 3.5m because of the concentrated droplets.

  • PDF

The Effects of Water Spray on the NOx Formation of a Counterflow Flame (물분사가 대향류 화염의 NOx 생성에 미치는 영향)

  • Jung, Sun-Wook;Min, Byoung-Hyouk;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.8-16
    • /
    • 2001
  • Various technologies for the reduction of atmospheric pollution have been developed. One of which is to inject fine-water droplets directly on the flame. This way decreases the formation of thermal NOx due to the temperature drop during evaporation of droplets. There is another effect of reducing prompt NOx, which is resulted from delay of response time and the flow of droplets. In this experiment, it has been investigated the effects of changes of water droplets size and flow rate on temperature and formations of NOx at the counterflow diffusion flame.

  • PDF

Experimental study on the production of spherical ice particles using water as refrigerant (물을 냉매로 하는 구형 얼음입자 제조에 관한 실험적 연구)

  • 신흥태;김민형;이윤표;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.475-482
    • /
    • 1998
  • In this paper, an experimental study was conducted to investigate the performance of the spherical ice particle production system which uses the technology of water spray in a vacuum chamber for increasing the heat transfer area. As a result, following conclusions were obtained. The diffusion-controlled evaporation model agreed relatively well with experiments. The spray flow rate influences the performance of the system rather than any other factors, for example, the spray nozzle position, the nozzle number. As the spray rate increases, the system efficiency increases. It is due to the entrainment of small droplets among the spray with the exhausted vapor. Thus the system should be designed and operated to prevent the entrainment. Assuming the compressor efficiency to be 70%, the COP of the system reaches highly up to 6 at a maximum spray rate. Under the conditions, however, the rigid ice layer is obtained because ice particles bond together with increase of the spray rate. Therefore, the spray rate should be controlled properly to make the spherical ice particles.

  • PDF