• Title/Summary/Keyword: Spray distance

Search Result 284, Processing Time 0.02 seconds

Atomization Characteristic of F-O-F Triplet Injector for Gas Generator (가스발생기용 F-O-F 충돌형 인젝터 분사특성)

  • Kwon, Sun-Tak;Lee, Chang-Jin;Kim, Seung-Han;Han, Yeoung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.62-68
    • /
    • 2005
  • An injector for fuel rich gas generator was designed and experimentally investigated. Five variations of F-O-F triplet impinging type injector were tested to evaluate spray characteristics with kerosene/water simulant propellant. Test was focused to find the effect of design variables of impinging angle, and impinging distance, on the atomization performance. A mixing efficiency is used to compare droplet distribution and local O/F ratio of each injector in the range of momentum ratio of 0.2~1.3. Test results shows the max value of mixing efficiency locates about the 0.8 in momentum ratio. And the injector with an impinging angle of 45 degree and impinging distance of 6mm shows the very good performance result suitable for fuel rich gas generator. A combustion test will be also conducted with selected injector to verify the spray pattern and mixing efficiency.

Effect of Swirl Angle on the Atomization Characteristics in Twin-Fluid Nozzle with Dual Air Supplying (이중공기공급 2-유체 노즐의 선회각 변화에 따른 미립화 특성)

  • Woo, J.M.;Kim, E.S.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The atomization characteristics of the dual air supplying two-fluid nozzle were investigated experimentally using PIV and PDA systems. The twin-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air, and the main nozzle to produce sprays. The main nozzle has the swirler with four equally spaced tangential slots, which gives the injecting fluid an angular momentum. The swirl angle in the swirler varied with $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The ratios of carrier air to assist air and ALR (total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the AMD and SMD distributions of the sprays were measured using PDA system. As a result, the SMD distribution increases along the radial distance, and it decreases with the increase of swirl angle in swirler.

  • PDF

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

Wind Profile in Rice Paddy Field (수도 재배 논에서 공기유동 프로파일)

  • 이중용;안은수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.221-228
    • /
    • 2001
  • Chemical application, one of the most important crop management processes happened to cause spray drift, that would threaten farmers in field as well as dwellers in rural region. Spray drift was affected by micro-meteorological parameters. A study to evaluate short distance drift characteristics of a boom sprayer in paddy fields has been undergoing. This study is the first step of the research. Main purpose of the was conducted to develop a mean wind profile and to get information on turbulence intensities above and within rice canopy. Wind in rice paddy field were measured at every 10cm from 10 to 180cm above the ground using a 2-dimensional probe and a hot wire anemometer system. Main results were summarized as follows. 1. Mean wind profile was modeled as; Equations. see full-text 2. Roughness length and zero-displacement in rice canopy were analyzed to be respectively 0.04 and 0.7∼0.72 times of the canopy height. The values are smaller comparing to those of other crops because rice canopy is flexible and uniform comparing to other crops. 3. Turbulence intensities (Tl) was greater as close to the ground and became constant at heights greater than 1.5Hc. where Tl’s were 0.4 and 0.15 in horizontal and vertical direction respectively.

  • PDF

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer (노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구)

  • Lee, J.W.;Kang, Y.G.;Baek, B.J.;Park, B.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF

A Study on the Combustion Characteristics with Control Strategy and Injector Position Changes in a Lean-burn LPG Direct Injection Engine (연소제어 전략 및 분사기 위치 변경에 따른 직접분사식 초희박 LPG 엔진의 연소특성 연구)

  • Park, Cheolwoong;Park, Yunseo;Lee, Yonggyu;Oh, Seungmook;Kim, Taeyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.98-104
    • /
    • 2014
  • The technologies employing spray-guided type combustion system for ultra-lean combustion direct injection engine is focused as a promising technology for satisfying emission regulations and improving fuel economy. In the present study, control and design optimization of lean-burn LPG direct injection engine was carried out with control strategy and injection position changes. Inter-injection spark ignition strategy was applied and the effect of the strategy was assessed at relatively higher load operation condition than previous researches. In order to create richer mixture in the vicinity of spark plug electrode, relative distance between the dead-end of injector and the electrode of spark plug was changed.

Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition (원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화)

  • Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

A Study of the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet onto a Plate (평판 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • Kim, M.S.;Oh, J.H.;Jeong, H.M.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a flat plate was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions. The wavy surface was observed in the case of low viscosity water, but not in the high viscosity aqueous glycerol solutions. The sheet thickness increased as the circumferential angle increased or the distance from the impinging point increased, but the thickness decreased as the circumferential angle increased around the impinging point. As the jet speed increased, the sheet thickness decreased, and the sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed that the measurement results agreed well in the case of low viscosity water or high viscosity liquids around the impinging point. The distribution characteristics of the sheet thickness can provide useful means for prediction of spray characteristics in splash plate injectors.